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1 Introduction

Real world systems are complex “objects”, which can be modeled at very differ-
ent levels of detail, and indeed we can define a system recursively as: a system is

a composition of interacting component systems. Therefore, we need a concept
of system which allows us to treat it as atomic when we wish to stop decompos-
ing, but also allows us to continue decomposing when we wish to do so. In order
to fix the basic concepts in systems description, we are giving in the following
some definitions, mostly taken from [4].

Three are the main types of levels we can consider:

• behavior level: this is also called input-output description or black-box

description. In fact the system is viewed as a black box and measures
done on it are recorded in a chronological order. This requires that a
time-base be defined as a subset of R (continuous time) or of Z (discrete
time). The behavior of the system is described as a set of trajectories,
which are mappings from subintervals of the time-base to some sets of
values representing possible observation results.

• state structure level: the systems is described in terms of mechanisms
for its internal working. Such a description is sufficient to generate, by
iteration over time, a set of trajectories. The tools for such a description
are the state set, which represents the possible configurations at any time,
the state transition function, which provides the rules for computing the
future state from the current one, and possibly an output function to map
the internal state set to an observable output set.

• composite structure level: the system is described as the connection
of many black boxes; therefore it can also be called a network descrip-

tion. The black boxes are defined as the components with specified input
variables and output variables, and a coupling specification must be given
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which determines the interconnections of the components and the inter-
facing of the input with the output variables.

The set of internal states represents the memory of the system, and it is
the heart of the modeling of its internal structure. The choice of the state set
is not unique and even its dimensionality is not fixed. The single state can be
considered as an instantaneous snapshot of the universe [2].

The different representations of a system can be related to each other both at
the behavioral and at the internal structure level. At the behavioral level the
basic relation is that of some kind of equivalence; at the structural level the
basic notions are those of homomorphism and of isomorphism. Therefore
it is possible to reduce a structural description of a system to a simpler one,
which is homomorphic with the former description.

2 Ontology of states and events: an example

Given the preceding picture of the system modeling tools and alternatives, we
are faced with the question of defining the right levels of description for a system,
the primitive objects, their attributes, the values set of each attribute, the rules
constituting the state transition function, the input stimuli which trigger state
transitions.

We can define as a state the set of values taken by the attributes (state
variables) of the objects which are the primitives at the level of description we
are considering.

As an example we can consider the snaphsot of an ATC radar screen as the
state of the sky above us, where the spatial coordinates of the light dots repre-
senting the airplanes (objects) are the state variables. An equivalent description
could be that of considering the distance matrix between any two dots as the
unique state variable, as we shall see in the following.

Most authors link the concept of system evolution, i.e. the transition from
one state to another, to the concept of event. In many cases the considered
event is just the flowing of time. Mc Dermott [2] states that every state has a
time of occurrence and that states are arranged in totally ordered sets, called
chronicles, which are complete possible histories of the universe, a concept anal-
ogous to what has been called trajectories before.

On the other hand, events can represent complex situations, which, in turn,
entail a state transition. It seems therefore that a contradiction emerges from
the two views: the first with an absolutistic flavor (events are marked with time),
the second with a relativistic one (events constitute time) [3].

The contradiction can be resolved if we consider the two conceptions - i. e.
an event triggers a state change or a state change is an event - at different levels
of detail, or if we see states and events as elements of a duality relation with
respect to different views of the system.

At a lower level, a relativistic view is taken, where some simple events, like e.
g. the coincidence of two marks, constitute time and are taken as primitives, we
build some simple systems which count the events, and we call them clocks. At
a higher level we consider clocks as components in a system and their outputs
are (slightly more complex) events which cause state changes, which, in turn,
can be taken as (complex) events at yet another level of description. In this
way it is possible to distinguish between the local states - as the internal states
of each object - and the global states of the whole system. It should be noticed
that, by adopting the recursive definition of system, these descriptions can be
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Figure 1: States table

stacked up and the global states of a lower level become local states of an object
at a higher level.

Going back to the radar example, we can think at the screen snapshot as a
macro object, composed of micro objects constituted by the light spots. The
state change of the micro world depends on the flow of time, since at every sweep
of the radar antenna the airplane positions on the screen change. However, from
the ATC controller point of view, we can distinguish at the macro level three
different states of the screen: the first is the “normal sky”, the second is an
“alert situation”, the third is a “collision scene”. Obviously, under the state
changes we can find the flow of time, but a more fruitful representation at the
macro level is to consider the state change to be induced by an event, e. g. two
airplanes whose distance is below a minimal threshold.

From this example, we can notice that an event can be the result of an
evaluation operation on some state variables. Is this fact in contrast with the
previous definitions of event?

3 Transforming states into events

Let us look closer at the example. Let us call St ≡ {xtiytizti} the state of the
system at time t, where the state variables xi, yi, zi are the spatial coordinates
of each airplane ai on the screen. This is the lowest description level of our
system, and it can be modelled as a Moore synchronous sequential machine [1],
in which the output is the state St itself, and a state transition is triggered by
a periodical signal every T (the sweep period); let us call it the MSM machine.

Let us define now the function d(ai, aj)

dt(ij) =
√

(xtj − xti)2 + (ytj − yti)2 + (ztj − zti)2

the spatial distance between any two airplanes ai, aj , and a particular value
of d, d = DTH > 0, called the danger threshold.

Since we are mainly interested in aircrafts mutual positions, we can assume
all the states having the same distance matrix to be equivalent; therefore, we
can transform the MSM machine into an internally equivalent machine MSM ′,
whose states Dt ≡ {dt(ij)} are defined by the isomorphism (but for rotations
or translations) induced by d.

Then, the following predicates can be set:

• AC (Alert Condition): (∃t′ : dt′(ij) ≤ DTH) ∧ (∀t, t′ : t > t′ →
dt′(i, j) ≥ dt(i, j))

• CC (Collision Condition): ∃t : dt(i, j) = 0
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Figure 2: States diagram

Now we group the states of the MSM ′ machine into three equivalence classes
following the rules shown in figure 1, where the equivalence classes are called:
N for Normal, A for Alert, and C for Collision.

Tracing back to the physical world, this clustering amounts to interpreting

the meaning of the rough data by means of conditions AC and CC. At each sweep
of the antenna the data are evaluated and one of the rules becomes TRUE; the
state of the MSM ′ machine possibly changes, moving among the clusters.

Therefore, at the behavior level, the system can be described by a sequential
machine BSM whose state set is E ≡ {N,A,C} and whose state transitions are
triggered by a set of events, constituted by changes in conditions AC and CC.
These are not external inputs to the system, but they come from the evaluation
of the boolean function g(AC(DTH,D), CC(D)) = ¬AC ∨ (AC ∧¬CC)∨CC,
which also determines the equivalence classes {N,A,C}.

Figure 2 gives a global picture of the radar system, where all the description
levels are shown.

So far we showed how it is possible to transform a low level description,
with a potentially infinite number of states, into a high level description, with
only three states. Let us examine now the time structure of the MSM and of
the BSM machines; this is important mainly for real-time system description,
where synchronous and asynchronous inputs rise rather different problems.

We saw above that MSM is a synchronous machine, driven by a periodic
input (i.e. its state change at every sweep), whose output depends only on the
internal state: Ot = f(St).

On the contrary, BSM is driven by non temporally deterministic events,
constituted by predicates AC or CC switching from TRUE to FALSE or vicev-
ersa. However we can notice that switching is not totally asynchronous since it
can only happen at some multiple n of the sweep period T .

Therefore, also BSM can be described as a synchronous sequential machine,
but of the Mealy type, that is whose output is function both of the input I and of
the state E: Ot = f(It, Et). In fact, in a Mealy machine the output is produced
at the same time as the input (but for internal delays), while in the equivalent
Moore machine an input at time t produces an output at time t + 1 [1]. This
feature seems more important for real-time systems than the risk that a noise
input to the Mealy machine (which could be filtered ahead of the decision unit)
could produce a spurious output.

4



4 Conclusions

In this paper we showed by a simple, but realistic example, which can be ex-
tended to other application domains such as nuclear power plants or the game
of chess, that the description tools for complex systems must be adapted to the
desired level of granularity, and that the different levels can be formally related
to each other.

In an ATC radar system, a change in the state value at the lower level,
i.e. airplanes position, results in an event which, in turn, possibly triggers a
state change at the upper level, i.e. the meaning of the radar snapshot. This
shows that not only the duality between events and state change can be fruitful
for modeling complex systems, but also that the concept of state evaluation is
consistent with such a model. Figure 3 synthetically shows the main steps to
the description transformation.
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BSMI � fAC;CCg; E � fN;A;Cg;Ot = f(It; Et)behavior equivalence +
map into equiv: classfD;DTH;AC;CCg g! fN;A;C; g+MSM 0I � fTig; D � fdijg;Ot = f(Dt)state isomorphism +
transf: state variab:S d! D+MSMI � fTig; S � fxi; yi; zig;Ot = f(St)

Figure 3: Transformation between the descriptions
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