


Context-Aware Software Approaches: a
Comparison and an Integration Proposal

Fabio A. Schreiber and Emanuele Panigati

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano - Via Ponzio, 34/5 - 20133 Milan, Italy
{fabio.schreiber, emanuele.panigati}@polimi.it

Discussion Paper
Abstract. In this paper, we claim that there are complementary fea-
tures which can bring different paradigms in the DM and PL domains to
a fruitful cooperation in building Adaptive Systems. The data tailoring
capabilities embedded in the PerLa sensor data management language
have been extended, thus applying context-awareness to generic system
operations; these operations, in turn, can be expressed as Layers in a
Context Oriented Programming language.

1 Introduction
Scientists and engineers have made significant efforts to design and develop adap-
tive systems. These systems are able to adapt their behavior according to specific
changes to the running context [5]. There are two main categories of behavioral
variations: internal changes include all preconceived events that occur within
the system and are able to modify the system state; external changes are related
to the environment and to user interactions and are caused by external events.
These systems address adaptivity in various respects, including performance, se-
curity, fault management, etc... While adaptive systems are used in a number
of different areas, software engineers focus on their application in the software
domain, called self-adaptive software. Self-adaptive software aims at adjusting
various entities or attributes in response to changes in the self and in the context
of a software system. By self, we mean the whole body of the software, while the
context encompasses everything in the operating environment that affects the
properties of the system and its behavior.

The central concept of adaptivity can be summarized by this definition [4]:
“Adaptive systems are able to adjust their behavior in response to their percep-
tion of the environment and of the system itself”.

On the other hand, a system able to retrieve data, to build and manage
contexts and to properly reason on them, is called context-aware. In context-
aware systems, context follows these pieces of the whole environment in which it
operates: a) Computing environment : available processors, devices accessible for
user input and display, network capacity, connectivity and costs of computing.
b) User environment : location, collection of nearby people, and social situation.
c) Physical environment : all external phenomena relevant to the system. In [11]
a context-aware system is defined as follows: “A system that provides services or
information to the users according to the context”.

22nd Italian Symposium on Advanced Database Systems

175



Adaptivity and context-awareness are strictly related to each other and in
many real situations are even interchangeable. However, context-awareness is
more related to “information tailoring”, i.e. it refers to the ability of the system
to know exactly at any time the current contextual information and to provide
it when required [3], while adaptivity refers to the execution of behavioral vari-
ations in response to changes of all the entities that can affect the behavior of
the system, also the internal software itself. Therefore Adaptivity and context-
awareness are complementary in building pervasive applications.

Starting from this premise, the PerLa language and middleware, designed
for managing data in Wireless Sensor Networks (WSN) [14], have been extended
with the ability of declaring and managing contexts [17], thus allowing to ap-
ply context-awareness to generic system operations; these operations, in turn,
can be expressed as Layers in a Context Oriented Programming language [13].
Throughout this paper we consider the classical application of keeping an office
room climate comfortable under several environmental constraints as an example
of the possibility to combine the data and the software-oriented approaches in
building adaptive systems. COP has been preferred to other approaches owing
to its layered structure which better allows the integration process, as we shall
see in Section 3.

The rest of the paper is organized as follows: in Section 2, we introduce the
background material on context management from the data as well as from the
programming languages perspectives; in Section 3 we present our proposal for
the integration of the Data Management and Programming Languages views;
finally, we discuss the conclusions in Section 4.

2 The background
2.1 Context: the Data Management view

2.1.1 A Pervasive Data Management Framework As extensively pre-
sented in [14] PerLa is a framework to configure and manage modern pervasive
systems and, in particular, wireless sensor networks. PerLa adopts the database
metaphor of the pervasive system: such approach, already adopted in the litera-
ture [10], is data-centric and relies on a SQL-like query language. PerLa queries
allow to retrieve data from the pervasive system, to prescribe how the gathered
data have to be processed and stored and to specify the behaviors of the devices.
Perla currently supports three types of queries: Low Level Queries (LLQ), which
define the behavior of every single or of a homogeneous group of nodes, and spec-
ify the data selection criteria, the sampling frequency and the computation to
be performed on sampled data; High Level Queries (HLQ), which define the
high level elaboration involving data streams coming from multiple nodes, and
are equivalent to SQL operations on data streams and Actuation Queries (AQ),
which provide the mechanisms to change parameters of the devices or to send
commands to actuators. The other fundamental component of PerLa is a mid-
dleware whose architecture exposes two main interfaces: a high-level interface,
which allows query injection and a low-level interface that provides plug&play
mechanisms to seamlessly add new devices and support energy saving.

22nd Italian Symposium on Advanced Database Systems

176



CREATE DIMENSION Env_Temp
CREATE CONCEPT cold

WHEN temperature < 18
CREATE CONCEPT mild

WHEN temperature >= 18 AND temperature < 24
CREATE CONCEPT hot

WHEN temperature >= 24
...
CREATE CONTEXT fire
ACTIVE IF Temperature = ’hot’ AND Smoke = ’persistent’
ON ENABLE:
SET PARAMETER alarm = TRUE

ON DISABLE:
DROP fire
SET PARAMETER alarm = FALSE

REFRESH EVERY 5m

Listing 1.1. The Context Dimension Tree and the fire context

The introduction of the CDT context model within the PerLa framework
makes it possible the description of how their combined action can be used to
achieve a context-aware pervasive systems management.

2.1.2 Embedding context into PerLa As mentioned in the introduction,
“pushing” the knowledge of context from the application down to the middle-
ware level was the main contribution of our previous work [17], [16]. To achieve
our goals we designed and implemented: i) an extension of the existing PerLa
language syntax, called Context Language (CL), in order to declare, inside
PerLa, the CDT, the contexts as well as the actions to be performed accordingly;
ii) the Context Manager (CM), able to maintain and manage the declared
CDT, detect active contexts and performs the desired actions.

Fig. 1. Context Dimension Tree (CDT)

The syntax of the CL has been divided into two parts, called CDT Declaration
and Context creation, both presented in details in [17].

CDT Declaration :
allows the user to specify the CDT, i.e. all the application-relevant dimensions

and the values they can assume. The CDT for our example is shown in Fig. 1.

Context creation :
allows the designer to declare a context on a defined CDT and to control its

activation by defining a contextual block, which is composed by four funda-
mental parts, called components:

22nd Italian Symposium on Advanced Database Systems

177



– ACTIVATION component: allows the designer to declare a context, using
the CREATE CONTEXT clause and associating a name to it. The ACTIVE
IF statement is used to translate the Context ≡

∧
i,j(Dimensionj =V aluei)

statement into PerLa.
– ENABLE component: introduced by the ON ENABLE clause, allows to

express the actions that must be performed when a context is recognized as
active;

– DISABLE component: introduced by the ON DISABLE clause is the
counterpart of the previous one, allowing to chose the actions, if any, to
be performed when the declared context is no more active;

– REFRESH component: instructs the middleware on how often the neces-
sary controls must be performed.

In Listing 1.1 we report a block declaration for a possible context that represents
the rise of a possible dangerous situation (a fire alarm).

Since the number of possible contexts has a combinatorial growth with the
number of dimensions and concept nodes, the syntax of the PerLa language
allows to separate the block components into one or more partials, thus relieving
the designer from the task of declaring a very large number of context [17].

2.2 Context: the Programming Languages view

Several programming paradigms have been proposed in the literature [13] in or-
der to support Context-awareness in object-oriented and modular programming
languages.

In the following we briefly compare the features of three approaches: Aspect-
Oriented Programming (AOP) [8], Context-oriented Programming (COP) [1],
[7] and Behavioral Programming (BP) [6]; we shall refer, for each one of these
paradigms, to the Java language and to its respective libraries: AspectJ, Jcop
and Bpj.
Context Oriented Programming Context-oriented Programming [13], [2],

[7] enables changes in the behavior of the application depending on the cur-
rent context. The main concept of COP is the behavioral variation. Each
behavioral variation is related to a specific piece of context and can be
dynamically activated and deactivated at run-time, enacting a behavioral
change; it represents the modularization unit of such piece of behavior

Aspect Oriented Programming Contrary to COP, which was born exactly
to enable context-dependent adaptivity, the main goal of AOP is the mod-
ularization of orthogonal functionalities in software by allowing a clear sep-
aration of cross-cutting concerns, where a concern is a set of information
which affect program code.

Behavioral Programming BP is a fully scenario-based approach based on
the concept of behavior threads (b-threads). Each thread models a specific
scenario (e.g a specific usage context), by defining the sequence of events
that must be detected in order to identify it.

2.2.1 Paradigm Comparison The main general features of the three paradigms
are summarized in table 1 and shortly commented in the following.

22nd Italian Symposium on Advanced Database Systems

178



Table 1. Language paradigms comparison

Syntax: AOP and COP require special constructs (new language keywords in-
troduction) to enforce their semantic features; their standard code is mixed
respectively with “aspect” and “contextual” code. BP instead provides only
new semantic features to the underlying programming language.

Support: AOP was born to deal with cross-cutting concerns through aspects
weaved at compile-time; however, a lot of frameworks have been developed
to make AOP dynamic. COP directly provides all the features necessary to
perform context-based behavioral variations at run-time.

Scoping: With dynamic layers composition, behavioral variations activation in
COP is dynamically scoped. In static AOP, scope is related to pointcuts and
join-points. In dynamic AOP scope is also related to aspects. In BP, scope
follows the same rules of the underlying programming language.

Design: COP avoids the definition of ad-hoc software components to perform
context-based behavioral variations. AOP also allows to reduce the impact
of application design through aspects. The design phase is a crucial part of
the development of an application implemented with BP: it requires software
engineers to correctly design the application scenarios.

Software modularity: AOP allows to encapsulate cross-cutting concerns in
dedicated modules separate from others. COP is more suitable for performing
behavioral variations, rather than for software structuring. BP allows for
code scenarios (behaviors) in dedicated software components (b-threads), so
it can be considered a modular programming technique.

Incremental development: One of the main advantages of BP is the ability
to structure the application in modules and to incrementally implement it
in agreement with requirements and scenarios. Also COP supports software
evolution thanks to the possibility to embed layers in classes. Both static
and dynamic AOP heavily focus on software modularization, they are a
good solution for software evolution.

Triggers: BP provides the features to trigger behaviors by sequences of internal
events while in AOP only a single event at a time can be considered, due
to the restriction imposed by join-points. In COP the number of triggering
events depend from the chosen framework.

Context COP is designed properly to combine both external and internal in-
formation in order to provide behavioral variations. AOP, in its dynamic

22nd Italian Symposium on Advanced Database Systems

179



version, provides all features necessary to handle both external and internal
information. Context for BP is instead totally determined by events.

Behavioral variations The main difference between COP and BP is that COP
makes more or less deep changes to the normal behavior whereas BP en-
forces the synchronized alternation of different behaviors, which can also
run simultaneously. Finally Dynamic AOP performs behavioral variations in
a way that could be substantially equivalent to COP, also obtaining quite
similar results.

3 Integrating PerLa and COP
COP focuses on the activation at run-time of context-dependent behavioral vari-
ations; in particular, it provides features to directly perform the variation of the
involved modules, starting from some significant contextual information.

On the other hand, the PerLa framework already provides a general context
model: the CDT. The designer must only declare a dedicated CDT and write
the application related CL queries and the middleware will be responsible for its
management.

At the current development stage, PerLa contextual features mainly focus on
data, and the actions that can be performed in response to contextual changes
are limited to the execution of PerLa statements [17]. Context has the role of
a data “tailor”, i.e. it allows the user to define which data, retrieved by sensors,
must be selected in a specific situation.
Context management

As mentioned in Sections 2.1.1, PerLa with its queries allows to monitor the
entire life cycle of the information working with several data streams, produced
by the sensing devices. With CL, the designer can define a sort of contextual
dynamic view on a data stream. On the contrary, COP is not directly aware of
how information is provided; in fact it is not directly responsible of sensors, but
it uses the information provided by them, to perform behavioral variations.

Both PerLa and COP are suitable for context distribution: the CDT model
deals naturally with contexts belonging to different groups of sensors and to
distributed instances of the application; in COP several threads may exist for
each local instance and they adapt their behavior differently. In COP it may
become necessary to introduce dedicated components to monitor continuous data
sources in order to provide contextual information, starting from rough data
provided by sensors, and to decide which layers activate on the application.
Enacting behavioral variations

The semantics of the ON ENABLE and ON DISABLE clauses of PerLa CL
could apparently look similar to that of the with and without statements of
COP. Considering the ON ENABLE clause, it sets which data must be provided,
and then it utilizes these data to change some parameters, according to the
corresponding concept in the CDT.

If the context is active and therefore the condition in the WHEN clause of
the corresponding concept is satisfied, an established action is performed.

The context SmokeMonitoring is actually an extension of the fire context in
Listing 1.1 since it performs additional actions (e.g. it stops the ventilation not

22nd Italian Symposium on Advanced Database Systems

180



CREATE CONTEXT SmokeMonitoring
ACTIVE IF Location = ’office’ AND Smoke = ’persistent’
REFRESH EVERY 1h
ON ENABLE (SmokeMonitoring) :
SELECT smoke
SAMPLING EVERY 10 m
EXECUTE IF EXISTS (smoke)
SET PARAMETER air_outlet = TRUE
SET PARAMETER alarm = TRUE
SET PARAMETER speed = 0
ON DISABLE (SmokeMonitoring) :
DROP SmokeMonitoring
SET PARAMETER air_outlet = FALSE
SET PARAMETER alarm = FALSE

Listing 1.2. The SmokeMonitoring example in PerLa

context SmokeRisk {
in(SmokeMonitoring sm) && when(SmokeMonitoring.smokeRisk()) {

with(SmokeLayer);
} }

class ActiveActuators {
public activeAlarm() {

// When this method is called by thread FireMonitoring,
// the fire alarm is activated

}
...
layer SmokeLayer {

activeAlarm() {
// If the layer is activated, the air outlet will be opened
Outlet.sendOpenCmd();

} } }

Listing 1.3. The SmokeMonitoring example in COP

to spread the smoke and it opens the outlet to let it flow away) in order to be
more effective in case of fire (Listing 1.2).

To implement the example in COP, an external mechanism to monitor changes
in context must be specified in addition to the definition of layers and when they
have to be activated. An intuitive solution could be the introduction of a thread
to monitor the temperature and the risk of fire, and another thread to monitor
the smoke level in the room. With COP, we can only define a context structure
to encapsulate changes related to the smoke detector. In fact, we can assume that
the activation of the fire alarm is the “normal” behavior, whereas the activation
of both actuators represents a variation (Listing 1.3).

The architecture of PerLa is shown in Fig. 2; a monitor thread checks only
the part of the global context useful for the SmokeMonitoring context activation;
so the SmokeMonitoring context stream contains all and only the values related
to temperature, humidity and air conditioner fan speed of the sensors located
in the offices. If a sensor is not located in an office, its data are completely dis-
carded in this context stream (Since the EXECUTE IF clause tells the system
to check data gathered from offices’ sensors). If a sensor gathers more data than

22nd Italian Symposium on Advanced Database Systems

181



Fig. 2. The system architecture

those required, the context unrelated data are discarded from the SmokeMoni-
toring context stream (another context stream must be declared if this data are
still needed by another context). This solution however does not provide a real
integration between the two actors.

An alternative solution may be to extend the PerLa CL with the option
of directly launching scripts, programs, functions or even applications from the
context queries, with a mechanism analogous to a Remote Procedure Call (RPC).
In this way, a direct connection between context information and behavioral
variations is created. The application designers can define a different independent
behavior for each context, not needing to implement intermediate components for
data and context management. The PerLa middleware takes the responsibility
of every aspect related to context management. The CM acquires a decisive
role: it must supervise the context activation state in order to avoid any possible
inconsistent situation, which, in this scenario, could be impossible to handle.

In Listing 1.4, the new clauses LOAD COP CONTEXT/DROP COP CON-
TEXT have been introduced, in order to tell the system to activate/deactivate
the related COP context (in this example, the COP code refers to Listing 1.3).
The activated COP context is then responsible of the relevant layer activation
(e.g. SmokeLayer) and of managing all the related threads and procedures, while
PerLa only manages the COP context activation/deactivation and controls the
switching among different contexts. Notice that the COP context activation is
not the only action performed by the system, since it firstly sends the air con-
ditioner the “stop” (setting its speed to “0”) command using the default PerLa
SET PARAMETER clause.

CREATE CONTEXT SmokeMonitoring
ACTIVE IF Location = ’office’ AND Smoke = ’persistent’
REFRESH EVERY 1h
ON ENABLE (SmokeMonitoring) :
SELECT smoke
SAMPLING EVERY 10 m
EXECUTE IF EXISTS (smoke)

22nd Italian Symposium on Advanced Database Systems

182



LOAD COP CONTEXT SmokeRisk
SET PARAMETER speed = 0
ON DISABLE (SmokeMonitoring) :
DROP SmokeMonitoring
DROP COP CONTEXT SmokeRisk

Listing 1.4. The integrated COP-PerLa approach

This mechanism can be compared to that of BP, i.e. activating a new indepen-
dent behavior when required. However, while in BP the alternation of different
behaviors is based on the occurrences of events or sequence of events, in PerLa
context and behavior can be regarded as a unique indivisible “block”, entirely
driven by sensor data.

Further examples and details about the PerLa and COP integration can be
found in [15].

4 Conclusions and future work
After a review of the approaches taken by the Data Management and by the
Programming Languages communities to the problem of building Context-aware
Self-adapting software, in this work we propose a hybrid solution based on the
PerLa framework and language to design, declare and manage Context, and
on Context Oriented Programming language JCOP to write complex layered
procedures where each layer is bound to a specific context.

A further step towards the building of comprehensive Context-aware systems
could be the inclusion of Context-aware Services [9] in the picture, as syntheti-
cally depicted in Figure 3.

Fig. 3. General structure of a C-A self-adapting system

Acknowledgments
We acknowledge the work of Ing. Matteo Rovero in surveying the Aspect-,
Behavior-, and Context-oriented programming paradigms in fulfillment of his
Master thesis [12]. This work was partially funded by the European Commis-
sion, Programme IDEAS ERC, Project 227977-SMSCom and Industria 2015,
Programma n◦ MI01_00091 SENSORI.

22nd Italian Symposium on Advanced Database Systems

183



References

1. Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael
Perscheid. A Comparison of Context-oriented Programming Languages. In COP
’09: International Workshop on Context-Oriented Programming, pages 1–6, New
York, NY, USA, 2009. ACM Press.

2. Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt, and
Kazunori Kawauchi. Event-specific software composition in context-oriented pro-
gramming. In Software Composition, pages 50–65, 2010.

3. Cristiana Bolchini, Carlo Curino, Giorgio Orsi, Elisa Quintarelli, Rosalba Rossato,
Fabio A. Schreiber, and Letizia Tanca. And what can context do for data? Com-
mun. ACM, 52(11):136–140, 2009.

4. Betty HC Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, et al.
Software engineering for self-adaptive systems: A research roadmap. Springer, 2009.

5. A.K. Dey. Understanding and using context. Personal Ubiquitous Comput., 5(1):4–
7, 2001.

6. David Harel, Assaf Marron, and Gera Weiss. Behavioral programming. Commun.
ACM, 55(7):90–100, July 2012.

7. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3):125–151, 2008.

8. Gregor Kiczales and Al. Aspect-oriented programming. In ECOOP, pages 220–242,
1997.

9. Zakaria Maamar, Djamal Benslimane, and Nanjangud C. Narendra. What can
context do for web services? Commun. ACM, 49(12):98–103, 2006.

10. Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tinydb: an acquisitional query processing system for sensor networks. ACM Trans.
Database Syst., 30(1):122–173, 2005.

11. Jason Pascoe. Adding generic contextual capabilities to wearable computers. In
Wearable Computers, 1998. Digest of Papers. Second International Symposium on,
pages 92–99. IEEE, 1998.

12. Matteo Rovero. Context-aware application development: A comparison of different
approaches. Technical report, Master Thesis, DEIB, Politecnico di Milano, 2013.

13. Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-oriented pro-
gramming: A software engineering perspective. Journal of Systems and Software,
85(8):1801–1817, 2012.

14. Fabio A. Schreiber, Romolo Camplani, Marco Fortunato, Marco Marelli, and Guido
Rota. Perla: A language and middleware architecture for data management and in-
tegration in pervasive information systems. IEEE Trans. Software Eng., 38(2):478–
496, 2012.

15. Fabio A. Schreiber and Emanuele Panigati. Context aware data management and
context oriented programming: is convergence possible? Technical Report 2014.7,
Politecnico di Milano – Dipartimento di Elettronica, Informazione e Biongegneria,
March 2014.

16. Fabio A. Schreiber, Letizia Tanca, Romolo Camplani, and Diego Viganó. Towards
autonomic pervasive systems: the PerLa context language. In Electronic Proc. 6th
NetDB, pages 1–7, 2011.

17. Fabio A. Schreiber, Letizia Tanca, Romolo Camplani, and Diego Viganó. Pushing
context-awareness down to the core: more flexibility for the PerLa language. In
Electronic Proc. 6th PersDB, pages 1–6, 2012.

22nd Italian Symposium on Advanced Database Systems

184


	copertina
	SEBD 2014
	cop
	PROC
	Indice Lavori sebd2014
	Binder4
	DMiA-01-sebd2014_submission_7
	DMiA-02-sebd2014_submission_18
	DMiA-03-sebd2014_submission_10
	DMiA-04-sebd2014_submission_48
	DMiA-05-sebd2014_submission_35
	DMiA-06-sebd2014_submission_8
	DMiA-07-sebd2014_submission_46
	DMiA-08-sebd2014_submission_21
	DMiA-09-sebd2014_submission_45
	DMiA-10-sebd2014_submission_6
	DMiA-11-sebd2014_submission_5
	DMoA-01-sebd2014_submission_52
	DMoA-02-sebd2014_submission_30
	DMoA-03-sebd2014_submission_22
	DMoA-04-sebd2014_submission_54
	DMoA-05-sebd2014_submission_49
	DMoA-06-sebd2014_submission_50
	DMoA-07-sebd2014_submission_33
	DMoA-08-sebd2014_submission_13
	DMoA-09-sebd2014_submission_37
	DMoA-10-sebd2014_submission_20
	DMoA-11-sebd2014_submission_42
	DMoA-12-sebd2014_submission_34
	DMoA-13-sebd2014_submission_40
	DMoA-14-sebd2014_submission_36
	LPQADD-01-sebd2014_submission_16
	LPQADD-02-sebd2014_submission_47
	LPQADD-03-sebd2014_submission_17
	LPQADD-04-sebd2014_submission_29
	LPQADD-05-sebd2014_submission_44
	LPQADD-06-sebd2014_submission_26
	LPQADD-07-sebd2014_submission_38
	MCHTA-01-sebd2014_submission_11
	MCHTA-02-sebd2014_submission_39
	MCHTA-03-sebd2014_submission_4
	MCHTA-04-sebd2014_submission_2
	MCHTA-05-sebd2014_submission_19(titoli diversi)
	MCHTA-06-sebd2014_submission_41
	MCHTA-07-sebd2014_submission_12
	MCHTA-08-sebd2014_submission_24(titoli diversi)
	KMSWO-01-sebd2014_submission_9(Titolo diverso)
	KMSWO-02-sebd2014_submission_14
	KMSWO-03-sebd2014_submission_25
	KMSWO-04-sebd2014_submission_28
	KMSWO-05-sebd2014_submission_32
	KMSWO-06-sebd2014_submission_31
	KMSWO-07-sebd2014_submission_27
	KMSWO-08-sebd2014_submission_23
	KMSWO-09-sebd2014_submission_53






