
 
 
 
 
 
 
 
 
 

PoLiDBMS: Design and Prototype 
Implementation of a DBMS for Portable 

Devices 

 
 
 

C. Bolchini, C. Curino, M. Giorgetta, A. Giusti, A. Miele, 
F. A. Schreiber, L. Tanca 

 
 

Politecnico di Milano, Dip. Elettronica e Informazione 
 
 
 

Proc. SEBD’04 
S. Margherita di Pula, June 2004 

 
pp. 166-177 

 



PoLiDBMS: Design and Prototype
Implementation of a DBMS for Portable

Devices?

C. Bolchini, C. Curino, M. Giorgetta, A. Giusti, A. Miele,
F. A. Schreiber, L. Tanca

Dipartimento di Elettronica e Informazione - Politecnico di Milano

Abstract. Very Small DataBases (VSDB) is a methodology and a com-
plete framework for database design and management in a complex en-
vironment where databases are distributed over different systems, from
high-end servers to reduced-power portable devices. Within this frame-
work the architecture of PoLiDBMS, a Portable Light Database Man-
agement System has been designed to be hosted on such portable devices,
in order to efficiently manage the data stored in Flash EEPROM mem-
ory. A flexible and modular solution has been adopted with the aim of
allowing the development of a system able to be customized in its fea-
tures, depending on the needed functionality and the available processing
power. The first prototype implementation provides all the elementary
functionalities of a DBMS, supporting a reduced set of the SQL language
that can be of interest in such a limited environment.

1 Introduction

Information systems running entirely or in part on portable devices are nowadays
possible, owing to the availability of small physical devices with always improving
computational and storage capabilities [1,2,3,4,5].

Unfortunately, software designed to run on portable devices must account
for a number of design constraints, related to computational power, energy con-
sumption, and persistent data storage issues; in particular the latter problem has
a considerable impact on software implementations, because dependable and ef-
ficient persistent data storage is a key requirement for this class of applications.
The currently commercially used EEPROM Flash memory technology does not
provide support to these requirements, offering memories with bit/byte access
granularity and erasure operations (needed to modify data) working on a per-
block unit. Such technological constraints have a significant impact on perfor-
mance, both in terms of response time and power consumption, the latter aspect
being extremely important in battery-powered portable devices. Moreover, Flash
memory blocks can only be erased a finite number of times (up to 100000) before
becoming unusable.

? This reasearch is partially supported by the FIRB project MAIS.



These low-level considerations are the starting point of our work; we aim at im-
proving Flash memory performance by using storage policies that offer simple
record based read and write services and tend to minimize the number of re-
quired persistent memory block erasures. A number of different approaches have
been defined to achieve enhanced memory management w.r.t. EEPROM Flash
technology, which have led to the definition and implementation of different stor-
age/access policies, each one representing a unique tradeoff between time and
energy costs for write and read operations.
We designed and implemented our Data Base Management System (DBMS)
from scratch, planning usage of such data storage routines to circumvent Flash
memory limitations, and definitely aiming at portable devices and applications:
to represent the aim of the project, the tool has been named Portable Light
DataBase Management System (PoLiDBMS).

Note that here efficiency is for some aspects different from the usual DBMS
performance concept. For instance, we assume our users to be highly interac-
tive, so we cannot ignore the long delays of block erasures, neither their power
consumption, since battery power is a precious resource in portable devices; at
the same time we do not strive to execute lots of queries in parallel.

This paper is organized as follows. Section 2 introduces the scenario of the
design methodology for Very Small Data Base for portable devices, the frame-
work of the proposed DBMS. An overview of the entire approach will unveil
the requirements and constraints that drove the design of our tool. Section 3
presents the DBMS architecture, focusing on its features and peculiarities; the
next one proposes a critical evaluation of the achieved results, also discussing
on-going work and future developments. Section 5 draws some final remarks and
outlines our research trends.

2 The scenario

This section provides a description of the scenario and the motivations for de-
veloping PoLiDBMS, highlighting the peculiarities and the differences w.r.t. the
environment of traditional DBMSs.

2.1 The VSDB Project

The environment we face is unusual for the common database management sys-
tems. For this reason the PoLiDBMS approach is basically different from the
one of the existing tools for data management on portable devices. While their
aim is to scale down an existing, traditional database management system to
fit for the reduced power and memory of portable devices, PoLiDBMS has been
developed to exploit a framework for direct data access and management based
on a set of low level considerations on the particular kind of memory often used
on portable devices: EEPROM Flash memory; indeed, our work starts from a
physical view of the problem.



While Flash memory has good read and first-write performance (typically
ranging from 80 to 120 nsec for read operations and 10 to 17 µsec/byte for
write operations), in order to modify data it is required to erase an entire block
(typically from 0.45 to 0.5 sec/block) and write manipulated data back. This
makes standard mass memory access methods disadvantageous, not only since
an erasure takes a long time to be performed but also w.r.t. power consumption
and memory endurance. The VSDB project proposes particular data storage
and management policies with the main aim at reducing the number of memory
erasures as much as possible. Two main memory management techniques have
been defined [1], named the deleted bit and the dummy record policies.

2.2 Low Level Data Structures and Operations

Classical, indexed data structures are often inappropriate for VSDB’s; indeed,
the search needs we have within the small tables stored is often not worth the
overload required for managing and maintaining indexes. We propose what we
call logistic data structures, i.e. intermediate data structures that should be cho-
sen to implement each database relation:
A Heap relation is used to store a small number of records (generally less than
10), unsorted, typically accessed by scanning all records when looking for a spe-
cific one.
Sorted relations, characterized by a medium (∼=100 - ∼=1000 records) cardinal-
ity, are used to store information typically accessed by the sort key.
Circular list relations, characterized by a medium cardinality as well, are again
suitable to manage a fixed number of log data, sorted by date/time; in this case,
once the maximum number of records is reached, the next new record will sub-
stitute the oldest one.
Multi-index relations are used to manage generic data.

The circular list logistic data structure is an example of how the DBMS
includes additional knowledge related to the application/data being managed.
An INSERT SQL command has the following effect: (1) the data is “appended” at
the end of the relation, (2) if the relation is full another record needs to be erased,
(3) the DBMS chooses always to delete the least recently inserted record. Thus,
deciding that a table is implemented by a circular list data structure means that
a kind of “knowledge independence” is achieved by delegating this choice to the
DBMS.

The technology behind Flash memories and their constraint on data erasure
introduces a significant impact on the delete and update operations, also affecting
insert operations in sorted relations. In fact, when the stored data need to be
modified, at least one Flash block needs to be re-written, implicitly requiring
a copy of its content in the RAM, an erasure of the Flash block and a write-
back, from RAM to Flash, of the modified content (dump/erase/restore DER
sequence). Do note that the DER sequence deeply affects performance (due
to the time required for the data “dump”), power consumption and storage
endurance.



In order to reduce the number of modifications requiring Flash memory era-
sure, an additional information is associated with each record:

– valid bit to indicate that the record has been programmed;
– deleted bit to indicate that the record has been logically (but not physi-

cally) deleted.

We minimize block erasures also by introducing a number of dummy records
per block [1]; such records may be either localized at the end of the block or
distributed through it by means of a hashing function, so that future insertions
do not always cause a re-organization of previously introduced records.

The DBMS relies on an elementary record-based access method, which allows
complete data management [1], while more complex tasks are left to the DBMS
at a higher level. The basic functionalities are: scan, equality search, range search,
insert, delete, update, used to read an entire relation, to read sets of records from
a table selected on an equality or range condition, insert a new record, delete
records on an equality condition, update a set of records, respectively. These
operations may seem too basic, but combined with a few others used to modify
the database schema they are the elementary memory operations necessary to
build all the complex manipulation of data required by our DBMS. Within this
framework PoLiDBMS has direct access to the memory: the granularity and
specificity of the drivers we built offer the possibility of an extreme optimization
of physical data management, reaching its top with a study of the flow of bits
over the bus to reduce power consumption to its minimum. To test the various
solutions and possibly offer feedback to a workload simulator for its decisions, an
implementation of a low level environment for the described policies was carried
out [6], exploiting and modifying the MIPS [7] assembler simulator SPIM [8].

2.3 DBMS functional specifications

Functional requirements are related to the environment the portable DBMS is
built in, thus the DBMS functionalities are restricted to those considered useful
on a portable device. Indeed, a portable device is likely to be used for specific
purposes, and the data handled by the DBMS on the portable device often rep-
resent only a portion of the global database that has been split (following the
methodology proposed in [9]) and stored part on the server side, part on the
portable device, to be readily available. Therefore, administration operations
such as the initialization of the database schema will be reserved to the DB
administrator/designer, at an initial phase of the DB life, allowing the user to
access data in read and modify mode, during normal operation, without modi-
fying the database structure.

The current version of the DBMS is focused mainly on query processing, while
transaction management is now under an integration phase. At the moment
PoLiDBMS supports a subset of SQL DML: select, join, ordering, grouping,
nested queries, multiple insert, delete and update operations, field and table
alias names (more details can be found in [10]).



First of all, let us consider the DBMS interfaces: the end user must be able
to perform queries through a SQL, as well as through a GUI-based (Graphical
User Interface) interface, while the administrator/designer of the database will
access extended features through a dedicated channel. As far as memory access
is concerned, the DBMS interacts with a driver, that offers an abstracted view
of the flash. For testing, performance analysis and profiling purposes, the DBMS
is designed to communicate with external simulators and tools. The prototype
tool is written in Java, for portability reasons and for easily interacting with
other tools developed within the VSDB project.

User input via the SQL interface, typically an SQL statement, is parsed
and translated into an internal representation of the query, on which the rest of
the system will operate. The GUI-based access, which is a menu-driven graphical
interface, offers the user the chance to perform queries through a simple interface
designed to be comfortable over a PDA.

Because the project is aimed at offering the designer the possibility to define
low level data storage and management for every relation, the best choice ap-
pears to be a dedicated Administrator Access interface which provides the DDL
standard functionalities along with support for low level decisions about physi-
cal data storage and manipulation1. The administrator access module is ideally
placed near the low level memory access module, being tightly connected to it.

PoLiDBMS relies on the Data Access Layer for persistent memory access.
This highly modular component offers a number of services, some of which are
optional and can be included only when needed; the main ones are the afore-
mentioned record-based elementary data manipulation operations. The imple-
mentation of this simple interface (described in greater detail in [10]) is provided
by Data Access Drivers: an example is the native driver (we name it “native”
because our implementation relies on JNI to interface with the C code imple-
menting storage policy routines and flash memory access2), which is used by the
DBMS core routines to gather records from tables stored on flash memory and
modify them with insert, delete and update operations.

PoLiDBMS can interact also with the other tools of the VSDB methodol-
ogy; some of these are already available while others are under development: the
Workload Simulator will interact with the DBMS in different ways. It can work
“over” the DBMS, to analyze response time for each operation of an interest-
ing subset, or can operate with a particular Data Access Driver implementation
for low level performance analysis. This interaction is exploited to gather infor-
mation, necessary for calibrating several simulation parameters to obtain more
accurate results. Again, a different Data Access Driver implementation might
rely on a serial connection to access a remote entity instead of operating directly
a flash memory: as an example, this can be exploited for testing purposes, operat-
ing on routines running on the assembler simulator SPIM, to test the framework
described in [6], or interacting with other devices such as smart cards.

1 Thanks to the flexibility of the architecture the DDL may be implemented if needed,
making Administrator functionalities accessible through the SQL interface.

2 On the Linux platform we have direct Flash memory interfacing capabilities.



Another tool to be integrated is a Profiler, that will help the DB Designer in
the profiling step of the DBMS: this will be used to calibrate the system deciding
query execution policies, as explained in the next section.

3 The DBMS Architecture

This section focuses on the internal view of the DBMS architecture, detailing
the role of the components that implement our approach in the execution of the
supported SQL statements. The design of the architecture (depicted in Figure
1) has been carried out with specific attention to modularization, making future
developments (both optimizations and the addition of new features) easier.

Fig. 1. The DBMS internal architecture.

SQLParser The input of this module is the SQL statement. This component,
when no error is detected, builds the QueryStack (see below) to be processed by
the DBMS core.

QueryStack A component of the SQLParser called StackGenerator creates the
QueryStack object, by collapsing in a stack the branches of the tree represen-
tation of the query, through a postfix visit. The query construction procedure
takes into consideration the basic functionalities offered by the BridgeDriver, a
flexible component, but specialized w.r.t. the features of the low level data access
policies. The QueryStack also contains other information, such as the identifier
of the user who performed the request (represented by a User object), useful
both for checking user’s permissions to execute the query and to implement the
concurrent multi-user feature (see future developments discussed in [10]).



Fig. 2. Data Access Layer overview.

Graphical User Interface The GUI, thought as the main user interface to
the DBMS, works via predefined menus. Such an interface is an alternative entry
point. As a consequence, the module substitutes the SQLParser functionalities.

Verifier This specific module has been designed to control user’s access rights
thus achieving a centralized control of security/privacy issues, both for the SQL
parser and the GUI. The Verifier module is necessary also for the login phase,
hence the independent module solution provides a more flexible architecture.

Optimizer This module plays an important role for the DBMS performance.
It analyzes the QueryStack object and, taking into consideration the schema
of the database and the low level data structures and policies chosen to store
the data on flash memory, produces a new, equivalent QueryStack object, which
is optimized to offer better performance in the execution of the user’s request.
Another important decision the Optimizer can take concerns the execution mode:
single-threaded or multi-threaded. In fact the results of the evaluation and testing
analysis for the PoLiDBMS unveiled that running multi-process applications on
portable devices is quite expensive due to the reduced computation power, or
to the difficulties in multitasking management under a heavy workload. This
issue could lead to the unexpected behavior that the execution of certain queries
in the single-threaded mode performs better than running them in the multi-
threaded way. Therefore the Optimizer, exploiting information gathered from
performance analysis and profiling, can determine the most convenient mode to
execute a certain query (or a certain class of queries).

This module is also the one that exploits the knowledge of the physical data
structures used to implement the DB relations according to the innovative poli-
cies developed for the EEPROM Flash memory support. More specifically, when



selecting the query execution plan, the module takes into account information
concerning not only the logistic organization of a relation (heap, sorted, circular
list or generic) but also its physical implementation (traditional, deleted bit, or
dummy bit). As an example consider the following SQL query:

SELECT table1.*, table2.field2, table2.field3

FROM table1 INNER JOIN table2 ON table1.field2 = table2.field1

WHERE table1.field1 = valueX;

where table1 is a small relation (less than 10 records), without any ordering,
implemented as a heap relation with a deleted bit physical data structure, and
table2 is a table storing data sorted w.r.t. field1, containing about 100 records
(the underlying logicistic and physical data structures are sorted relation and
distributed dummy bit, respectively).

The execution of the query will require a scan of table1, that will be filtered
on field1 once in main memory. Starting from the resulting records, two are
the possible plans to perform the JOIN: search on relation table1 using the
sorting field (and in particular the hashing approach provided by the driver) or
a scan of the same relation, performing in main memory the required matches
ON table1.field2 = table2.field1.

This second option may become more interesting for sorted relations im-
plemented with the distributed dummy bit approach when there are several dis-
carded records on the Flash that have been virtually deleted (but not physically)
to limit Flash memory erasures. Such information on the memory status are pro-
vided by the low level driver and PoLiDBMS is able to exploit them in order
to achieve significant performance. The decision to adopt one execution plan
rather than another (although, given the device limited resources the number
of different plans is quite limited) derives from application profiling carried out
by means of the Workload Simulator developed to select, for each relation, the
most promising data structures in terms of costs and performance.

The innovative logicistic/physical data structures selected at design time,
the interaction with the Workload Simulator and Profiler, exploited during the
design of a VSDB, allow to move knowledge from the application to the DBMS,
thus factorizing common tasks within the strict constraints imposed by the mem-
ory structure and the device limited resources.

Admin Access This component of the DBMS is used to perform the typical
administration operations. Besides the possibility to alter the database schema
(an operation not allowed through the SQL Interface), the administrator can
establish how data are physically stored and handled, w.r.t. the low level policies
previously described. This requires the administrator to be able to understand
the physical implications of these choices, supported in this task by the VSDB
methodology.

Data Access Layer In order to access Flash memory, the core of the DBMS
interacts with the C Driver through the Data Access Layer interface. Alternative



implementations of the Data Access Layer may store the data on other possibly
virtual units (for example for testing purposes) and from the DMBS-core point
of view no function call would change. We also plan to implement a connection
to the simulator [11], which would generate detailed statistics, useful for tuning
other components. We already have optional pluggable mechanisms allowing the
collection of information during normal usage for a given case study, logging
calls to the driver to monitor costs and performance.

Other modules Each elementary operation pushed on the QueryStack is an
instance of a common interface:

– Joiner, executes the join operation between two sets of records, offering SQL
INNER JOIN and OUTER JOIN types as well as the cartesian product of the
relations;

– Sorter, returns the given records ordered on the specified field(s);
– BridgeDriver, used to represent a single call to the Data Access Layer in the

QueryStack. In fact, at the launch of the application, the Data Access Layer
is instanced and that instance is used for the whole application; instead,
the BridgeDriver is instanced specifically for every memory access operation
in the QueryStack. According to how it is constructed it may represent a
table scan, an equality search, a range search, insert, delete or update [1].
We added some extra features to these basic functions, like the possibility
to insert an entire set of records, and to perform a delete or an update of
records with a nested statement, such as:

DELETE FROM table1

WHERE table1.field4 IN (SELECT field1

FROM table2

WHERE field2=7);

– Swapper, used to swap columns when needed, for example when the user
indicates, in the target list of a selection query, the columns in an order
different from the order they appear in the relation, or to re-order columns
in a nested query;

– FieldRenamer, used to rename the columns of a relation;
– Presenter, returns the results of the query. The functionalities of the Swapper

and the FieldRenamer could have been included in this module, but separate
modules have been designed in order to achieve a greater modularity, which
allows also to swap columns before the final presentation step

– Nester, needed for any operation that involves nested queries, i.e. IN, > ANY,
< ALL, etc;

– ProjectionManager, performs the projections of a relation; this module is
not only called by the Presenter, but can also be used in case the Optimizer
module pushes a projection to optimize the query execution;

– SelectionManager, executes the selection operation of a ResultSet given a
specific condition.



Core This component is responsible for thread management offering the two
previously discussed solutions of single-threaded and multi-threaded execution.
When the single-threaded mode is adopted, the Core starts a thread only af-
ter the previous one has come to an end. When the multi-threaded mode is
adopted the Core launches all the QueryThreads that can run concurrently, yet
guaranteeing that updating statements be executed in isolation. The Core pack-
age includes a module referred to as ConditionHandler invoked whenever the
evaluation of a condition is necessary. For example the Joiner module, or the
SelectionManager module will use the ConditionHandler to determine whether
a pair of records must be joined or a record must be kept or discarded. More-
over, the ConditionHandler is used to solve elementary operations included in a
WHERE clause, e.g.

SELECT *

FROM table1

WHERE field1=field2 + field3

The ConditionHandler behaves differently from other modules, since it is
called internally by such modules, but is not instanced and put on the QueryS-
tack.

QueryThread This component wraps the QueryStack object and executes the
elementary operations on the stack; it is used to improve the performance in the
execution of more than one query to provide, when possible, the possibility to
execute them concurrently. A synchronization mechanism guarantees that the
QueryThreads (that run independently) return the results in the same order
they had been requested.

ACID properties have been taken into account while designing the DBMS
architecture, enforcing them at different levels of the architecture and involving
several modules (e.g. the Data Access Driver). At present no mechanism for
integrity constraints enforcement has been introduced yet.

4 DBMS Evaluation

A DBMS prototype has been implemented according to the analyzed require-
ments and the proposed architecture. As a first step, the primary goal of the
development is to verify the feasibility of the project, i.e. the possibility to im-
plement a DBMS targeted for portable device, considering its limited resources,
as well as to exploit the advantages that the underlying flash access driver pro-
vides. The other main goal of this prototype is the validation of the architectural
design of the DBMS. As a result, the proposed implementation is only a prelim-
inary prototype with limited functionalities. The natural evolution of the tool,
given the positive evaluation, is the re-engineering of the preliminary modules
and the development of advanced components in order to achieve a complete
DBMS.

As it is, the prototype can be used to integrate the framework of the Very
Small Database Design Methodology, interacting with the other software tools,
allowing us to draw preliminary conclusions about the entire methodology.



The adopted programming language is Java [12] based on the necessity to cre-
ate an integrated environment together with the tool supporting the methodol-
ogy and the simulator for identifying the most convenient data access/management
policies [1]. The target platforms on which the DBMS is meant to run, which
range from a Smart Card to a cell phone or a PDA, impose an even tighter
requirement for the selection of the programming language. The common factor
to these reference platforms is their ability to run Java applications. Our pro-
totype proves the feasibility of a portable light database management system.
The quality of the achieved results has been analyzed by testing the application
both on a hand held computer (a H3900 iPAQ with linux) and on a full-featured
Personal Computer.

From the first tests, performance, both on the full-featured Personal Com-
puter and on the PDA, seems satisfactory, especially for standard, not intensive
computations, such as the ones expected to be run. We noticed a sensible perfor-
mance degradation, on the portable device, for relatively heavy workloads, such
as a highly complex query containing an ORDER BY clause applied to a thousand
records. Thus we can conclude that, considering the peculiar characteristics and
the limitations of the portable devices, we have reached our first purpose. The
system is actually in a phase of deeper performance testing and benchmarks are
foreseen against other DBMSes of the same class.

The project is still under development, taking also into account extensions
and functionalities that have been planned, but are currently “work in progress”.

A first goal of these activities is devoted to the optimization of the already
developed modules, aimed at exploiting their performance and completing the
pending unavailable features.

Another important goal consists in investigating distributed transaction man-
agement aspects and the synchronization of the portable database with the
one(s) resident on the server side(s). The two issues are closely related as far
as a “special” access to the database data is necessary in order to support them,
covering also aspects related to ACID properties enforcement and users’ permis-
sions management [13].

5 Final remarks

This paper introduces the architecture of a Database Management System for
portable devices, called PoLiDBMS, designed and implemented (in a proto-
type version) as part of a more comprehensive framework targeting Very Small
Databases. The proposed DBMS is built on top of a Data Access Layer designed
to enhance data access and management performance for small amount of data
stored on EEPROM Flash memories.

The DBMS architecture we propose has beeen specifically designed to cope
with the requirements and constraints of small devices characterized by reduced
resources. A flexible and modular solution has been adopted with the aim of
allowing the development of a system able to be customized in its features, de-
pending on the needed functionality and the available processing power. The



first prototype implementation provides all the elementary functionality of a
DBMS, supporting a reduced set of the SQL language that can be of interest
in such a limited environment. Such a prototype will be the starting point for a
re-engineering process aimed at completing the secondary modules and optimiz-
ing the fundamental ones, in pursuit of a full-featured PoLiDBMS. Advanced
features have also been investigated and planned, assuming the adoption of the
tool also in other application environments.

References

1. C. Bolchini, F. Salice, F. A. Schreiber and L. Tanca, “Logical and physical design
issues for smart card databases,” Transactions on Information Systems, vol. 21,
no. 3, pp. 1046–8188, 2003.

2. C. Bobineau, L. Bouganim, P. Pucheral and P. Valduriez, “PicoDBMS: Scaling
down database techniques for smart card,” in 26th Int. Conf.e on Very Large
Databases, 2000, pp. 11–20.

3. Smart card adoption for ID application in the Italian Government, Italian Govern-
ment, 2002, http://www.innovazione.gov.it/ita/comunicati/ 2002 02 08cie.shtml.

4. J. Sutherland and W.-J. van den Heuvel, “Enterprise application integration and
complex adaptive systems,” Comm. of the ACM, vol. 45, no. 10, pp. 59–64, 2002.

5. K. Cheverst et alii, “Developing a context aware electronic tourist guide: Some
issues and experience,” in Proc. of CHI ’2000, 2000, pp. 17–24.

6. C. Curino, M. Giani, M. Giorgetta and A. Giusti, “MIPS implementation of some
very small data bases data structures,” Polit. di Milano, Tech. Rep., 2003, 2003.45.

7. E. Farquhar and P. Bunce, The MIPS Programmer’s Handbook. Morgan Kauf-
mann, San Francisco, CA, 1994.

8. SPIM20: A MIPS R2000 Simulator, University of Wisconsin-Madison, 1996, avail-
able online at http://www.cs.purdue.edu/homes/hosking/502/ spim/raw.html.

9. C. Bolchini, F. A. Schreiber, and L. Tanca, “A context-aware methodology for very
small data base design,” SIGMOD Rec., vol. 33, no. 1, pp. 71–76, 2004.

10. C. Curino, M. Giorgetta, A. Giusti and A. Miele, “Portable Light DBMS:
PoLiDBMS White Paper,” Polit. di Milano, Tech. Rep., 2003, 2003.46.

11. D.Roncelli, “Definizione e sviluppo di una metodologia per l’allocazione
logico/fisica di basi di dati su smart card,” 2002/2003, tesi di laurea.

12. Sun, “Java website,” 2003, http://java.sun.com/.
13. C. Bolchini, A. Lazaric, C. A. C. Pascali, S. Sceffer, F. A. Schreiber, L. Tanca,

“Implementation of a distributed commit protocol on the PoLiDBMS,” Politecnico
di Milano, Tech. Rep., 2004, MAIS Internal Report WP5.2.


