

Logical and Physical Data Structures
for Very Small Databases

Cristiana Bolchini, Fabio Salice, Fabio A. Schreiber, Letizia Tanca

Politecnico di Milano, Dip. Elettronica e Informazione

Proc. SEBD’02
Portoferraio, June 2002

pp. 337-344

Logical and Physical Data Structures
for Very Small Databases

Cristiana Bolchini, Fabio Salice, Fabio A. Schreiber, Letizia Tanca

Politecnico di Milano, Dip. Elettronica e Informazione
P.zza L. da Vinci, 32, I20133 Milano, Italy

{bolchini, salice, schreibe, tanca@elet.polimi.it }

Abstract. The widespread adoption of portable devices and of embedded pro-
cessors for professional embedded systems, and the technology underlying such
devices raise new challenges. We propose physical and logical data structures to
provide efficient, energy saving and endurance preserving access to data, man-
aged by means of a DBMS. The paper relates on a project studying innovative
data structures at the logical and physical level, to be adopted in very small
databases hosted by portable devices/embedded systems, characterized by Flash
EEPROM storage. The task is in fact part of a complete methodology for design-
ing very small databases.

1 Introduction and Motivation

Today portable devices (PDA, palm, smartcards, cell phones), from PC downwards, are
becoming widespread, and traditional applications are scaled down in order to cope
with the limited resources of such devices in terms of processing power and perfor-
mance results. Many of these applications rely on information systems, whose data
may be distributed among different traditional data sources, but can be partially stored
on the portable device, as a part of a larger database. As a result, the problem of de-
signing databases for this class of devices is twofold. On the one hand, we should start
to conceive DBMSs as small as possible, where the classical ACID properties should
be at least partially guaranteed, taking into account the new features of the medium; on
the other hand, the distributed application design must indicate which parts are located
on traditional physical mediums (such as large scale computer systems) and which are
located onto miniature devices. For latter data, appropriate logical and physical data
structures should be defined, allowing for an efficient (integrated) access to data, both
from the performance and the power consumption viewpoints, the latter being one of
the specific critical aspects of this class of devices.

Our project [1,2] proposes a design methodology supporting the database designer
in the identification and the localization of such information areas at conceptual schema
definition time; it also proposes a logical design phase which is, more than traditionally,
integrated with the physical design phase, and where tables are analyzed w.r.t. the envis-
aged access types, information volatility, user permissions and protection mechanisms;
output of this phase is the suggestion of the most suitable data structures to be adopted
to physically implement the database relations. The rest of the paper is organized as

follows. Section 2 introduces the complete design methodology, briefly describing its
steps. Section 3 focuses on the proposed implementation for VSDB relations, discussing
the logical and physical data structures allowing a satisfactory performance/cost trade-
off in accessing stored data. In section 4 an evaluation of the proposed data structures
is made w.r.t. performance and power consumption.

2 The proposed methodology

Fig. 1 briefly describes a complete framework for designing very small databases for
embedded processors and portable devices.

IDENTIFY INFORMATION AREAS AND
DEFINE VIEWS

INTEGRATE VIEWS INTO THE
CONCEPTUAL SCHEMA

FRAGMENT LOGICAL ENTITIES and
TAG FRAGMENT W/ CARDINALITY

ALLOCATE EACH FRAGMENT
ON CARD/OUTER SYSTEM

DEFINE ACCESS TYPE and
INFORMATION VOLATILITY

CHOOSE THE DATA STRUCTURE

CHOOSE ACCESS METHODS

FOR EACH FRAGMENT
ALLOCATED “ON CARD”

DEFINE PRIVACY PROFILES
OWNER/GUESTS & VIEWS

DESIGN MEMORY
PROTECTION MECHANISM

CHOOSE ENCRYPTION ALGORITHMS

1.

2.

3.

4.

5b.

6b.

7b.

5a.

6a.

7a.

Fig. 1.The proposed methodology for supporting the database designer: steps denoted by a hand
writing icon are a burden of the designer and an input to the procedure, while those denoted by
PC icons can be automated.

The methodology includes a common track, derived from distributed/federated data-
base design methodologies [3,4], which takes care of the conceptual and logical aspects;
the lower part deals with “on chip” features: the left branch concerns privacy/security
aspects while the right branch concerns the physical memory data structures and algo-
rithms.

In the sequel we shall mainly focus on the problems related to the right branch; for
a detailed description of the privacy related matters, refer to [5].

In steps 1 and 2, views are defined for the relevant information, at a conceptual
level, singling out homogeneous information areas. Views are integrated into a global
conceptual schema solving possible representation and semantic conflicts. In steps 3
and 4, fragmentation of logical entities is made in order to separate “first need” infor-
mation - to be stored on the smart card - from the other fragments - to be stored in

other sites of the Information System. A close estimate of the fragment cardinalities is
to be made at this step. Once provided an entity allocation hypothesis (on the card vs.
on the main DBMS) a check is to be made on the smart card storage capacity: possibly
fragmentation and allocation criteria shall be reconsidered. The other steps of the right
branch, we have been focusing our attention on, are the following. 5b: expected dom-
inant type of performed operations (select, update,) and data volatility are estimated
for each relation in the database; 6b: for each relation the most suitable physical data
structure is selected based on the information annotated at step 5b; 7b: access methods
are chosen for the data structures selected at step 6b depending on the constraints in-
troduced at step 6a. Steps 6b and 7b are totally automatic, and a prototype tool is under
development.

The following section details the introduced logical and physical data structures.

3 Data models, logical and physical data structures

The right-side branch of our methodology aims at identifying the most convenient logi-
cal and physical data structures for managing the information to be stored, retrieved and
manipulated through the database. The efficiency of the solution is evaluated in terms
of: a) access time to perform the desired operation, b) amount of required storage, and c)
power consumption required by the desired operation. The technology behind the class
of devices we are considering has a relevant impact on the above mentioned aspects,
and will be briefly discussed in the sequel.

3.1 Technology issues

When considering portable devices, the permanent memory medium (the storage) is
a nonvolatile memory support, EEPROM or Flash EEPROM. The technology of this
class of memory is such that, for Flash-EEPROM (from now on called simplyFlash),
write data operations areprogram ming operations that can only be performed if
the target location has either never been written before, or has been previously erased.
A further complication and space/performance cost arises from the fact theerase
operation works only at block level granularity, not at record level granularity.Flash
memories are divided into blocks and each block can be erased separately.read and
program operations work at the single bit/byte granularity; any byte (word) can be
read or programmed separately. Endurance is a critical factor as well; each erasure has
an impact on the life of the device. If the number of expectederase /program cycles
(100,000 may cover a 5 years period) can seem satisfactory for a portable device, the
same does not hold true for embedded systems for specific application where such a
period is far from the lifetime of the entire system. Do note that, once the device quality
is deteriorated, the reliability of the device is jeopardised.

Thus, in a Flash memory, in order to achieve good performance and a long en-
durance it is necessary to reduce the number of data modifications. Sinceupdate, delete
and insert operations are required and inevitable, the sequel of the paper focuses on
the minimization of the cost associated with the required operations with respect to the
mode data have to be managed and stored.

Characterisation Values
Read (nsec) 20 to 150
Program (msec/byte) 2 to 7
Erase (s/block) 0.7/0.8
Cell Size (mm2 - 0.6 mm tech) 6,4
Endurance (program, erase) 100.000

Table 1.Flash-EEPROM technical characteristics

3.2 Data structures for very small databases

The proposed approach [6] targets very small databases characterized by small volumes
of data to be managed, an assumption deriving from the class of applications suitable for
portable devices. Based on this hypothesis, we tried to identify a limited number of what
we call “logical/physical data structures”, i.e. intermediate data structures that should
be chosen to implement each database relation (without loss of generality, we shall
refer to the relational model of data [1]). In the description of such data structures we
refer to our running example, the Portable Internet DataBase (PIDB), storing personal
information for internet access (see Fig. 2).

Tuple Length: 104Byte
Cardinality: 100
Limited: YES
Key: url
Ordered: YES -
LOGLIKE(visited_on)
Access Type Frequency:
o INSERT: HIGH
o DELETE: NEVER
o UPDATE: NEVER
o SELECT: scan - MEDIUM
 equal - MEDIUM
 range - MEDIUM

tbl_bookmarks

PK url

description
last_visited

tbl_history

PK url

description
visited_on

tbl_access

PK url

description
login_id

tbl_weblogin

PK id

login
passwd

tbl_purse

PK id

balance

tbl_movements

PK purse_id
PK date

description
amount
url

Tuple Length: 10Byte
Cardinality: <10
Limited: NO
Key: id
Ordered: NO
Access Type Frequency:
o INSERT: LOW
o DELETE: LOW
o UPDATE: HIGH
o SELECT: scan - HIGH
 equal - HIGH
 range - LOW

Tuple Length: 104Byte
Cardinality: 100
Limited: NO
Key: url
Ordered: YES - (ulr)
Access Type Frequency:
o INSERT: MEDIUM
o DELETE: MEDIUM
o UPDATE: LOW
o SELECT: scan - LOW
 equal - MEDIUM
 range - LOW

Tuple Length: 32Byte
Cardinality: <10
Limited: NO
Key: id
Ordered: NO
Access Type Frequency:
o INSERT: LOW
o DELETE: LOW
o UPDATE: LOW
o SELECT: scan - LOW
 equal - HIGH
 range - LOW

Tuple Length: 102Byte
Cardinality: 100
Limited: NO
Key: url
Ordered: YES - (ulr)
Access Type Frequency:
o INSERT: MEDIUM
o DELETE: MEDIUM
o UPDATE: LOW
o SELECT: scan - LOW
 equal - MEDIUM
 range - LOW

Tuple Length: 114Byte
Cardinality: 100
Limited: YES
Key: purse_id,date
Ordered: YES - LOGLIKE(date)
Access Type Frequency:
o INSERT: HIGH
o DELETE: NEVER
o UPDATE: NEVER
o SELECT: scan - MEDIUM
 equal - MEDIUM
 range - MEDIUMPK: Primary Key

HEAP

HEAP

CIRCULAR
LIST

CIRCULAR
LIST

SORTED

SORTED

Fig. 2.The Portable Internet DataBase: Table Annotation and adopted data structure

A Heap relation is used to store a small number of records (generally less than 10),
unsorted, typically accessed by scanning all records when looking for a specific one;

example of this kind of data is the login/password data in the PIDB database, storing
different registered user identities.

Sorted relations, characterized by a medium (∼=100 -∼=1000 records) cardinality
are used to store information typically accessed by the order key. The idea here is to
impose an upper bound to the number of records that can be inserted based on the
complete size of the (fragment of) table. Once the upper bound is reached, the user will
have to delete (or store externally) a record before adding a new one. With respect to
the running example, URL Bookmarks can be managed by means of sorted data.

Circular list relations, still characterized by the same cardinality of the previous
data type, are again suitable to manage a fixed number of log data, sorted by date/time;
in this case, once the maximum number of records is reached, the next new record
will substitute the oldest one. In the PIDB example, data logs of the last m URLs most
recently visited and the lastnpayments in the E-purse can be stored by means of circular
lists.

Multi-index relations, not belonging to the previously defined categories, are used
to manage generic data, typically when the need is to access efficiently relations by
multiple keys. This is the only data structure we propose which resembles the classical
data structures used in DBMS’s.

Our methodology (step 5b) requires the designer to tag each entity of the logical ER
schema for the database under consideration with the following information:

– Tuple length (in bytes) and Expected Relation Cardinality (eventually specifying
an upper bound to the number of records to be allowed (e.g., 100 entries for the
visited web sites history).

– Presence of a sorting field, specifying if the field is a time field leading to a log-like
– Expected composition of the set of operations on data:insert/delete/update/select

(this last one further classified in a full select -scan-, select with equality -equal-
and select with range -range-).

The expected composition refers to the frequency of operations estimated with respect
to one another: it cannot be a precise value, rather a relation between the possible oper-
ations. For instance, consider thetblhistory relation. The user can say that the dom-
inant operation will be theinsert, usually nodeleteand noupdate. The other common
operation is theselect, assuming an equal distribution in the three identified selection
schemas.

3.3 Physical implementation: memory management

The technology behind Flash memories and their constraint on data erasure introduces
a significant impact on thedeleteandupdateoperations, also affectinginsertoperations
in sorted relations. In fact, when the stored data need to be modified, at least one mem-
ory block needs to be re-written, implicitly requiring a copy of the content in the RAM,
an erasure of the Flash block and a write-back (from RAM to Flash) of the modified
content of the block (dump/erase/restoreDER sequence). Eventually, this operation
may involve also the adjacent memory blocks.

In order to reduce the number of modifications requiring the erasure of the Flash
memory, we introduced an additional information associated with each record of a re-
lation:

– valid bit to indicate if the record has been programmed;
– deleted bit to indicate if the record has been logically (but not physically) deleted.

The use of thevalid bit is used to physically discriminate empty records from writ-
ten ones, and is required for the particular memory technology when memory is pro-
grammed in a non-sequential fashion. Though this bit is essential when memory is man-
aged in a non-sequential fashion, the use of a validity bit is more general and involves
the dilemma of distributed and concentrated control on the stored data. In particular,
the valid bit is a “distributed” control since each valid record is directly distinguishable
from the others while the use of an end-address (register) is a “concentrated” control
since it univocally identifies the end of the record list. The concentrated control is a
space-aware but energy-time consuming approach since the end-address value needs to
be updated every time the list is modified, while thedump/erase/restoresequence. The
deleted bitis used to allow the system to reduce the number of Flash memory erasures
by programming the bit of the corresponding record and to postpone the physical ex-
punging to a later moment. Do note that the DER sequence deeply affects performance
(due to the time required for the data “dump”), power consumption and the storage en-
durance. The introduction of thedeleted bit, coupled with a not-sequential management
of the physical memory leads to reduce the necessity to erase blocks, at the cost of an
increase in the amount of required memory and a more complex management policy, as
discussed in the following.

When dealing with data sorted with respect to a field, insert and delete operations
have a significant overhead due to the necessity to maintain the data ordered; further-
more the operation may affect a single block or multiple blocks if the relation data
is distributed over several blocks. The proposed data structure aims at a) confining
block involvement in data manipulation and b) minimising block erasure. This goal
is achieved by means of introducing a number of dummy records per block (Fig. 3a);
such records may be either localised at the end of the block or they may be distributed
through it.

In the latter case records are stored not adjacently: a hashing function is used to al-
locate records in the block so that future insertion do not always cause a re-organisation
of previously introduced records (Fig. 3b). The hashing function may be implemented
either in software or in hardware; in this case thevalid bit is mandatory to determine
which records are actually programmed and which are not. The use of the concentrated
dummy records aims at preventing multiple blocks involvement when records need to
be shifted up or down following a delete or insert operation (intra-block erasures). The
distributed dummy records solution further limits inter-block erasures.

Thedeleted bithas the same function as above (Fig. 3c).
The combined use of dummy records anddeleted bitis useful in sorted relations, the

use of thedeleted bittechnique alone is suitable for circular lists and possibly heap re-
lations, at the cost of additional space requirement w.r.t. the minimum possible amount
of memory. The database annotation performed at step 5b of the entire methodology

Fig. 3. Use of dummy records a) concentrated at the end of the block - bold frame - or b) dis-
tributed through the block. c) Use of distributed dummy records anddeleted bit

allows the association of the most convenient data structure, as above discussed. Cur-
rent research is investigating the impact and costs of such data structures on generic
relations not falling in previous cases.

4 Structures evaluation and concluding remarks

The proposed data structures together with the possible physical implementation, have
been analysed and compared with a “naive” implementation, both w.r.t. performance
and power consumption. Costs have been estimated in terms of the total amount of nec-
essary memory due to the additional bits associated with each record, and the dummy
records; algorithm complexity and the consequent execution requirements (time and
power consumption) have been also estimated. The first results show that the combina-
tion of the two strategies dummy records (requiring the use of thevalid bit) anddeleted
bit allows to reduce the average time to perform the operations on data and to signifi-
cantly limit the number of erasures. It is worth noting that, with the proposed structures,
selectoperations have an overhead due to the presence of the empty records that slow
the scanning of the records. A simulator has been developed to evaluate all parame-
ters and to compare different solutions; currently our effort is devoted to the analysis
of generic relations and to the enhancement of the application of these data structures
in different moments of the database life, depending on the volatility of data. Table 2
reports a summarization of the experimental results carried out for evaluating the pro-
posed data structures, for each relation. A synthetic workload made of operations evenly
distributed betweeninsert, deleteandupdatewas used, increasing memory occupation
to analyse the impact on block erasures and the amount of information transmitted on
the bus, two significant aspects affecting performance and power consumption.

The setup for the experiments is: 4Kbyte Flash Memory blocks, a 32 KByte RAM
and a 128 byte record size for the relations; then number of Flash blocks and the number

Data Block Erasures Transmitted Bits on Bus
structure Strategy 10%-30%40%-60%70%-90% 10%-30%40%-60%70%-90%

Simple 1 1 1 1 1 1
Heap Delete bit 0 0.38 0.98 0.38 0.54 1.00

Simple 1 1 1 1 1 1
Sorted Delete bit 0.83 0.68 0.79 0.74 0.71 0.77

Dummy conc. 0.83 0.51 0.44 0.74 0.57 0.45
Dummy dist. 0.10 0.12 0.24 0.03 0.06 0.22

Circular Simple 1 1 1 1 1 1
List Delete bit 0 0 0.05 0.07 0.07 0.15

Table 2. Experimental results: occurred block erasures and transmitted bytes on the system bus
w.r.t. “the naive”, nodeleted bit, no dummy records solution.

of records per relation differ in the various situations, depending on the data structure
being simulated.

The first part of table 2 reports the ratio between the number of block erasures
occurring when adopting the specified implementation and the number of block erasures
when using a “naive” implementation. As an example, consider thesortedrelation with
a half full memory (50%): with the concentrated dummy solution the workload causes
only half the number of block erasures w.r.t. the “naive” implementation. Similarly, in
the second part of the table we reported the ratio between the number of bits trasmitted
on the data bus for each proposed approach w.r.t. the “naive” implementation.

As it can be noted, the achieved results show an improvement in the Flash memory
access both in terms of erasure operations and read/written bits, elements affecting the
system performance and power consumption.

Our plans for the future include the development of a full-fledged methodology,
designed to be computer supported in as many steps as possible. We will also further
investigate strategies for power saving and performance enhancement.

References

1. P. Atzeni, S. Ceri, S. Paraboschi, R. Torlone. Database systems. McGraw-Hill (2000)
2. C. Bobineau, L. Bouganim, P. Pucheral, P. Valduriez. “PicoDBMS: Scaling down Database

Techniques for Smartcard”. Proc. 26th Int. Conf. on Very Large Databases (VLDB), (2000)
pp.11-20.

3. S. Ceri, G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-Hill (1984)
4. Smartcard adoption for ID application in the Italian Government,

http://www.cartaidentita.it/cie/reader/index.html , 2002.
5. C. Bolchini, F. A. Schreiber. “Smart card embedded information systems: a methodology for

privacy oriented architectural design”. Data & Knowledge Engineering, Elsevier Science,
Amsterdam, vol. 41 (2-3) (2002) 159-182.

6. C. Bolchini, F. Salice, F. Schreiber, L. Tanca. “Logical and Physical Design issues for Smart
Card Databases”. Technical Report no. 2001.68, Politecnico di Milano (2001).

