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1. INTRODUCTION

The Information Management area is currently seeing the growth, in number
as well as in size, of applications that can profit from modern portable devices
such as palm computers, cell phones, and smart cards.

While smart cards have been recognized as being among today’s most secure
portable computing devices [ItGov 2002; Sun Microsystems 1999; DataQuest
1998; Bobineau et al. 2000], almost no attention has been devoted to the most
appropriate ways of adapting database techniques to this most powerful tool.
Bobineau et al. [2000] made a very thorough examination of the relevant issues
that arise in this context, by proposing a storage model complete with query
cost evaluation, plus transaction techniques for atomicity and durability in this
particular environment. To our knowledge, this is the most complete attempt to
analyze in-depth database management system (DBMS) design problems with
respect to microdevices.

The attention of Bobineau et al. [2000] was mostly devoted to DBMS de-
sign techniques, following the traditional assumption that data structures and
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access methods should be designed once and for all by the DBMS manufac-
turer while the database designer should be in charge of conceptual and logical
database design, confining the physical design phase to the mere choice of fields
to be indexed. By contrast, we claim that, besides the typical interface for table
definition and indexing, the data definition language (DDL) of a smart card
DBMS should expose also the handles for a number of data structures (with
the corresponding algorithms), ready to be chosen by the smart card database
designer, appropriately assisted by system support. Indeed, owing to the in-
trinsic limitations of the smart card medium, the database designer should
be aware of the physical constraints from the very beginning of the design
process; there are two main design phases where these constraints are to be
enforced:

—The classical information system lifecycle contemplates, at conceptual de-
sign time, a view design and integration phase where data and procedures
belonging to information system areas are first singled out and then appro-
priately integrated. When the system is distributed, at logical design time
tables are partitioned among the system sites according to appropriate frag-
mentation and replication criteria. In a similar way, in our context, such data
and procedures must be accommodated on the smart card itself, and appro-
priately distributed and replicated on other fixed sites the smart card might
be connected to.

—At logical/physical design time, the threefold objective of performance, power
consumption and memory endurance optimization must influence the eval-
uation of on-card data structures and algorithms, and the policy of data ma-
nipulation (e.g., delete operations). An accurate study of this phase allows
the smart card database designer, appropriately supported by our tool, to
specify to the DBMS which of these data structures and algorithms should
be used for table access.

Note that power management is also an issue in this scenery, since sometimes
the smart card terminal is not directly connected to a power source, for example,
in case of subscriber information module (SIM) cards for cellular phones.

Moreover, some applications can involve sensible personal data that require
a variable level of privacy. Since privacy aspects have a great importance in a
uniform storage medium with tightly packed sensitive information, their im-
pact should be considered as early as possible in the design phase [Bolchini and
Schreiber 2002].

The purpose of our research was to conceive a full-fledged database design
methodology, which should guide the database designer from the conceptual
design step, carried out in the traditional way by using one of the well-known
conceptual design models, to the semiautomatic choice of the data structures,
access methods, and memory allocation/management policies, based on the
analysis of the physical storage devices currently offered by smart card tech-
nology. To this aim, we propose a logical-physical data model, that is, a number
of structures and algorithms the smart card DBMS should implement and offer
to the choice of the system-assisted database designer.

ACM Transactions on Information Systems, Vol. 21, No. 3, July 2003.



256 • Bolchini et al.

Since the real restrictions of today’s smart cards concern much more sec-
ondary storage capacity than the computational power of their instruction sets,
rather than studying possible reductions to SQL (as the standard ISO/IEC
7816-7 does, introducing Structured Card Query Language (SCQL) [Rankl and
Ewffing 1999], a subset of SQL for smart cards), we concentrate on the best data
organization policies for secondary memory, in order to implement a full-fledged
query language.

In this paper we introduce the design methodology, and then concentrate on
the logical-physical data model that supports the design of such novel database
applications.

The paper is organized as follows: after the introduction of a running ex-
ample that will be used throughout the paper, Section 2 outlines the proposed
methodology and singles out the specific topic addressed by this paper, that is,
the guidelines for semiautomatic design of data structures and access methods
for smart card data. Section 3 presents the reader with a brief on the most re-
cent technological issues related with our problem, namely, smart card storage
devices. Section 4 introduces the data structures we propose for the physical
storage of on-card tables, together with the annotations the designer is required
to specify in order for the system to provide physical design support. Sections 5
and 6 examine the issue from the DBMS viewpoint, that is, they study the
cost of the various access operations as well as the most suitable physical im-
plementation policies, which are strongly related to the technological features
of smart card memory support. The discussion is supported by simulation re-
sults in Section 7. Future developments and research trends are discussed in
Section 8, along with the final conclusions.

2. A SMART CARD DATABASE DESIGN METHODOLOGY

In this section, after a short discussion on possible categories of smart card
databases, we introduce our running example and briefly outline the general
methodology for smart card database design. The next sections are devoted
to the details of those methodology steps that are the subject matter of this
paper.

In our view, smart card databases can be classified into two main categories:

(a) Single-application databases (SADs), where only one application is
modeled: examples of this category are personal financial databases as the
stock portfolio, or a personal travel database, recording all the travel infor-
mation considered interesting by the smart card owner; the PIA (portable
internet access database), reported in the sequel as a running example,
belongs to this category.

(b) Personal (micro) information systems (PISs), whose most noticeable exam-
ple is the citizen’s card, recording such administrative personal data as
driver’s licence and car information, passport, judicial registry, etc.; another
example of this category is the medical record, reporting the owner’s clinical
history complete with all the past clinical tests and diagnoses [Sutherland
and Van Den Heuvel 2002].
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A noticeable feature of smart card databases is that the owner and all his/her
information have a peculiar role in the entity-relationship (ER) schema; in
fact, while items of the card owner’s data constitute the virtual center of the
database, they often amount to a unique entry, that is, a singleton record. This
role could be compared to that of the home page of a Web site, which is just
a singleton entity in the site schema, or to the fact table of a relational on-
line analytical processing (OLAP) schema for a data warehouse [Atzeni et al.
2000].

This point is much less relevant for SADs than for PISs, where the future
applications of smart cards will see the integration of more than one personal
application, all conceptually related to one another by means of such a database
center. The design of this category of smart card databases presents many simi-
larities to that of distributed applications, for the relevant information must be
distributed among the smart card and other fixed devices the smart card will
be connected to: imagine the road police department recording all the driver’s
license and car data, a portion of which is also recorded and appropriately
updated on-card, while the court of justice records contains all the possible
legal charges against the owner. Notice that this consideration has driven us
to proposing, for our methodology, some initial steps that mimic very closely
distributed database design.

Now we introduce our running example: a portable database used to store
personal information related to Internet navigation.

2.1 The Portable Internet Access Database

As an example of a single-application database, let us consider the case of a
smart card for Internet access data, storing personal information related to a
user’s Internet navigation history. Here the key idea is to store information con-
cerning favorite Web sites (bookmarks), {login, password} pairs used to access
protected areas of the Web, a log of the most recently accessed unified resource
locator (URLs), and, finally, an electronic purse (e-purse) to directly manage
payments, with a log of the most recent ones; note that e-purses might be mul-
tiple, as in the case of several credit cards (for instance, a corporate one for
company expenses and a personal card for one’s own use).

All this information is meant to be available on the smart card, possibly
protected by encryption in order to guarantee information privacy: the card
owner will sit in front of a generic Internet-connected machine, and find his/her
Internet environment ready for use.

The entity-relationship diagram in Figure 1 shows the portable internet ac-
cess (PIA) conceptual schema.

2.2 The Methodology

The methodology we propose for smart card database design is shown in
Figure 2. It is composed of a common track and two branches. The common
track, derived from distributed/federated database design methodologies [Ceri
and Pelagatti 1984; Tamer and Valduriez 1991], takes care of the concep-
tual and logical aspects; the lower part deals with “on chip” features: the left
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Fig. 1. The entity-relation diagram for the PIA database.

branch concerns privacy/security aspects (discussed in [Bolchini and Schreiber
2002]), while the right branch concerns physical memory data structures and
algorithms.

We will discuss the whole tree shortly, but in the following sections we shall
mainly focus on the problems related to the lower/right branch. Notice that
steps denoted by the “writing hand” icons are tasks for which the designer
must provide a manual input to the procedure, while those denoted by PC icons
can be automated.

We start by outlining the methodology steps (note that the list numbers are
directly related to the numbers in Figure 2):

(1) The relevant information is chosen and modeled; this is done by singling out
homogeneous information areas, with the corresponding conceptual views,
regardless of the target storage media.

(2) Views are integrated into a global conceptual schema and possible repre-
sentation and semantic conflicts are resolved; logical entities (for instance
relational tables) are designed.

(3) Logical entities are fragmented, possibly both horizontally and vertically,
in order to single out “first need” information to be allocated on the smart
card. Indeed, as already noted, smart card database design criteria must
be very similar to those adopted for distributed database design, since the
smart card database will often be part of a larger information system, pos-
sibly allocated to several fixed machines besides the smart card(s) itself
(themselves).

(4) A strict estimate of the fragment cardinalities is made at this step.
(5) “First need” fragments of the appropriate size are allocated to the smart

card, taking into account the card memory size constraint, while the other
fragments are allocated to other site(s) of the information system; the inter-
est of this phase of the methodology is better understood reasoning on per-
sonal (micro) information systems, for instance a personal medical record,
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Fig. 2. The entire methodology.

where the most recent clinical tests are kept on card, while the whole per-
sonal clinical record is stored in the family physician’s computer.

At this point a first comparison is to be made between the fragments and
the smart card storage capacity: possibly fragmentation and allocation criteria
shall be reconsidered.

(6) (a) Access rights are defined for each fragment and for each user class,
and the relevant constraints are included in the view definitions: for in-
stance, in the case of a car accident, the first aid personnel of an ambulance
should read from the medical card the patient’s blood pressure record, but
not his/her possible insurance policies (to be used later by the hospital ad-
ministration); with respect to the personal legal information card, the traf-
fic authorities should have a read-only access to the relevant information
of the judicial registry connected to the individual’s license [Bolchini and
Schreiber 2002]; (b) the type of access mode (read only, read/write) and the
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volatility (for example in terms of update/query ratio) are estimated for
each fragment (see Sections 4 to 6 later in this paper).

(7) (a) Memory protection mechanisms are to be designed in order to prevent
unauthorised users to access sensitive information; (b) the most convenient
data structures are chosen (see Sections 4 to 6).

(8) (a) Possibly an encryption algorithm is chosen for some very sensitive data;
(b) access methods are chosen for the data structures defined at step 7(b)
under the constraints coming from step 7(a) (see Sections 4 to 6).

At step 6(b) the information is gathered in order to allocate the same type of
information, in terms of volume and volatility, on the same sets of blocks. In par-
ticular, if asymmetric Flash-EEPROM (EEPROM = electrically erasable pro-
grammable read-only memory) is considered (for more details see Section 3.2),
where four different block sizes are normally used, very low-volume information
can be stored in the smallest blocks while high-volume information can be stored
in one or more of the biggest blocks. At steps 7(b) and 8(b), the methodology is
supported by a tool for the choice of the appropriate physical data structures
and access algorithms among those offered by the smart card DBMS, as shown
in Sections 4 to 6.

3. SMART CARD TECHNOLOGY ISSUES

Smart cards are essentially devices that allow information storage and process-
ing, but need to interact with an active device providing the necessary power
supply. Based on the technology adopted for the memory device and for the on-
card processing unit, different types of smart cards can be chosen, according to
the required security level.

The simplest architecture is the processor card, which contains a micropro-
cessor, a simple cryptographic coprocessor, and blocks of memory including
random access memory (RAM), read-only memory (ROM), and a nonvolatile
memory (usually EEPROM or Flash-EEPROM). More sophisticated cards, cryp-
tographically enabled, are based on the processor card architecture where the
simple cryptographic coprocessor is replaced by an advanced one. The improve-
ment in the crypto cards allows public key encryption, whereas processor cards
only provide private key encryption. Given the application environment this pa-
per presents, the target architecture is the microprocessor multifunction card
(MMC).

3.1 Microprocessor Multifunction Cards

The microcontroller used in Smart card applications contains a central pro-
cessing unit (CPU) and blocks of memory, including RAM, ROM, and repro-
grammable nonvolatile memory (NVM). RAM is used to store executing pro-
grams and data temporarily, while ROM is used to store the operating system
(Card Operating System, or COS), fixed data, standard routines, and lookup
tables. The reprogrammable nonvolatile memory is used to store information
that has to be retained when power is removed, but that must also be alter-
able to accommodate data specific to individual cards or any changes possible
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Fig. 3. A schematic representation of a smart card microcontroller.

Table I. Smart Card Microcontroller
Characteristics (December 2002)

Component Characteristics
CPU 8-16-32 bits
RAM 256 bytes to 1 kbytes
ROM up to 32 kbytes
EEPROM 256 bytes to 64 kbytes
write/erase cycles minimum 100,000 cycles

over their lifetimes; more specifically, the smartcard NVM constitutes the data
storage for the database. Based on this consideration, technology issues have a
significant impact on the overall system performance.

Components of this type of architecture include a CPU, RAM, ROM, and
EEPROM. The operating system is typically stored in ROM, the CPU uses
RAM as its working memory, and most of the data is stored in EEPROM. A rule
of thumb for smart card silicon is that RAM requires four times as much space
as EEPROM, which in turn requires four times as much space as ROM. Typical
conventional smart card architectures (Figure 3) have properties as shown in
the following Table I.

A preliminary analysis concerns a comparison of the features and perfor-
mance of the two main NVM architectures, in order to focus our analysis on a
specific memory type. In fact, although classical EEPROM (from now on called
simply EEPROMs) and Flash-EEPROM (from now on called simply Flash) are
functionally equivalent (both are electrically erasable reprogrammable non-
volatile memory), they differ in terms of performance, integration density, cost,
read/program/erase methods. The comparison we summarize later in this paper
seems to be to the advantage of Flash memories as more promising for future
MMC. Furthermore, the size reduction of the transistor used to implement
memories makes it increasingly difficult to scale EEPROMs since this tech-
nology requires relatively high voltage (18 V) to be applied during the write
process; thus, EEPROMs will not be suitable for high-density product genera-
tion beyond 0.18 µm [Stockdill 2002].
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In EEPROMs, the contents may be erased and programmed at byte level,
typically 16, 32, or 64 bytes. The erase operation is transparent to the user;
read time is approximately 150 ns, program time is 10 ms/16, 32, or 64 byte
page (157–625 µs/byte) while erase time is not applicable.

In Flash memories write data operations are programming operations that
can only be performed if the target location has never been written before,
or has been previously erased. A further complication and space/performance
cost arise from the fact the erase operation works only on blocks of data at
a time. Flash memories are divided into blocks, and each block can be erased
separately; read and program operations work independently of the blocks; any
byte (word) can be read or programmed separately.

Thus, in Flash memories the minimum erase element is larger than the
minimum read/program element; the erase element is a page, sector, or the
entire device, while the read/program element is a byte or a word; read time is
approximately 80 ns at 5 V (or 120 ns at 3 V), program time is 10 µs/byte at 5 V
(17 µs/byte at 3 V) and the erase operation requires approximately 0.45 s/8-kB
block at 5 V (0.5 s/8-kB block at 3 V). As for integration density, Flash memories
are more compact than EEPROMs; in particular, Flash is approximately two
times more compact than EEPROM [Stockdill 2002].

Summarizing, although Flash memories are more interesting than EEP-
ROMs in terms of read/write time and integration density, they present a dis-
advantage concerning the erase operation that is particularly expensive with
respect to time and power consumption. However, these drawbacks can be
strongly reduced if a correct erase policy is applied. For example, if a block
is erased only when its entire content has to be modified, an EEPROM memory
is approximately four times slower than a Flash one in writing 64k bytes in the
same single block for n times. Although this example represents a special case,
an appropriate set of policies can make Flash memories much more interesting
than EEPROMs.

As a consequence, in what follows we concentrate on the peculiar character-
istics of Flash memories, in order to target the previously presented analysis to
access times, costs, and architectural characteristics to this specific technology.

In Butler et al. [2001], the authors explored the problems related to EEPROM
storage optimization for smart cards and introduced the “transacted memory”
technology which embeds transaction capabilities in the memory itself, while
managing data information and EEPROM space. The main assumption, which
influences and motivates the approach proposed by the authors, is that EEP-
ROM technology allows only block writes. Given this premise, the transacted
memory manager provides tags and additional components to optimize storage
use and transaction features. In the technological environment we consider,
there is not such a restriction to write on a per block basis; thus our approach
has different requirements and constraints. Nevertheless, as we will discuss in
what follows, we also adopt a tagging technique in order to optimize storage
use and to achieve a long EEPROM lifetime.

We must also notice that the peculiar features of Flash memories make
smart card databases differ from main memory databases (MMDBs). In fact,
Eich [1992] noted: “In a Main Memory Database system . . . the need for I/O
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Table II. EEPROM and Flash-EEPROM Technical Characteristics (December 2002)

EEPROM Flash-EEPROM
Read (nsec) 150 80@5V to 120@3V
Program (µsec/byte) 157 (64 Byte) to 625 (16 Byte) 10@5V to 17@3V
Erase (sec/block) N.A. 0.45@5V to 0.5@3V
Cell Components 2 transistors 1 transistor
Cell Size (µm2 @ 0.4 µm tech) 4,2 2
Cost per bit Medium Low
Endurance (write/erase cycles) 10k to 100k write cycle/byte 10k to 100k erase cycle/block

operations to perform database applications is eliminated . . .” (p. 507); this as-
sertion is due to the substantial homogeneity of the RAM storage medium for
MMDBs [Garcia-Molina and Salem 1992]. Moreover a great part of main mem-
ory database studies are devoted to overcoming the RAM volatility proper-
ties. This is not the case for a smart card database system where Flash mem-
ory acts as a true secondary storage with very different read/write properties
with respect to the RAM main memory, making it look more like a traditional
DBMS.

3.2 Flash Memories: Dimension, Power and Timing Issues

So far, the amount of data storage available in a Flash memory ranges form
32 Mbit to 512 Mbit (both organized by 8 or 16). Research for 512 Mbit and
above is currently taking place. Power requirements vary depending on the
operation that has to be performed. A read operation requires an average of
about 10 mA (12 mA max) whereas program and erase operations require an
average of about 20 mA (35 mA max).

Access time depends on both the operations and the mode. To enlarge on
what we introduced in Section 3.1, as far as read access is concerned, random
read requires about 150 ns (for example, 100 ns in NOR Flash architecture
(Intel, AMD) and 120 ns in DINOR Flash architecture (Mitsubishi)), whereas
read page mode and read burst mode (when supported by the memory) requires
about 35 µs to access the first byte in a page and 50 ns for subsequent reads
(for example, 25 µs first byte and 50 ns subsequent bytes in NAND Flash ar-
chitecture (Toshiba) and 50 µs first byte and 50 ns subsequent bytes in AND
Flash architecture (Hitachi)). Concerning programming time, each program op-
eration takes approximately an average of 13 µs per byte or word. Erase time
depends on block dimension: typically a 64-kbyte block takes about 0.7 s. An-
other consideration concerns Flash endurance: in fact, a Flash memory works
for 100,000 erase cycles/block. This data is all reported in Table II.

In order to achieve good performance and a long endurance, it is thus neces-
sary to reduce the number of data modifications. Since update, delete, and insert
operations are required and inevitable, the remainder of the paper focuses on
storage and management techniques that minimize the cost associated with
the required operations.

It is worth noting that the time to erase a block is approximately 10 times
that required to program a block, which, in turn, is 100 times that required
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to read a block; as a consequence, our effort is to reduce the number of erase
operations.

4. DATA STRUCTURES AND ANNOTATIONS: THE LOGICAL-TO-PHYSICAL
DATA MODEL

Given the main applications we envisage for smart card databases, and in gen-
eral for embedded systems based on a Flash memory permanent storage, we
assume that the volumes of data which must be readily available will not need
to be not very huge: data fragmentation and allocation will lead to a reduction
of the cardinality of the relations actually stored on the smart card. For exam-
ple, even if we imagine that the PIA will store all the user’s visited sites, most
probably only the last 30 sites will be kept on card, while the rest will consti-
tute a fragment allocated in the card owner’s personal computer. Thus we claim
that the data types adopted for physical storage must be very simple, appropri-
ately used in relation to the data volume and usage type of each specific data
class.

In order to illustrate this part of the methodology, we rely of the PIA database
example, introduced in Section 2: this very simple example will be useful for
this paper’s purposes, where the relevant issue is more related to logical and
physical considerations than to the (equally interesting) subject of fragmenta-
tion and allocation criteria.

From now on, to fix ideas and without loss of generality, we shall refer to the
relational model of data [Atzeni et al. 2000], also because this model affords
a high degree of simplicity consistent with the dimensional requirements of
the device. However, our considerations can be extended to other logical models
without much effort. We consider the logical schema of the PIA database shown
in Figure 1 (primary keys are underlined):

TBL BOOKMARKS (URL,DESCRIPTION,CATEGORY, LAST VISITED)
TBL HISTORY (URL, DESCRIPTION, VISITED ON)
TBL WEBLOGIN (ID, LOGIN, PASSWORD)
TBL ACCESS (URL, DESCRIPTION, LOGIN ID)
TBL MOVEMENTS (PURSE ID, DATE, TIME, URL, DESCRIPTION, AMOUNT)
TBL PURSE (ID, BALANCE)

In order to model the relations to be stored and managed by the database,
four data types have been identified1:

—Heap relation, characterized by a limited cardinality, generally less than 10
records, used to store a few records, unsorted, typically accessed by scan-
ning all records when looking for a specific one. In the running example, the
login/password pairs relation fits these characteristics.

—Sorted relation, characterized by medium cardinality (∼100 to ∼1000
records) and by being sorted with respect to a field. This kind of relation
is used to store information typically accessed by the order key. Depending
on the size of the relation, it will be possible to store the entire relation on

1The terms are partially taken from file classification.
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card, or eventually only a subset of the records; once the upper bound is
reached, the user will have to delete a record before adding a new one. With
respect to the running example, URL bookmarks can be managed by means
of sorted data.

—Circular list relation, still characterized by the same cardinality of the previ-
ous data type, but stored and managed as a circular list, typically sorted by
date/time. This kind of relation is typically suitable to manage a fixed num-
ber of log data; once the maximum number of records is reached, the next
new record will substitute the oldest one. In the PIA example, data logs of
the last m URLs most recently visited and the last n payments in the e-purse
can be stored by means of circular lists.

—Generic relation (multiindex structure), not belonging to the previously de-
fined categories. Such data might be indexed with respect to more than one
field, by means of some of the data structures suggested in Bobineau et al.
[2000] (for instance the ring index approach detailed later in this paper). This
is the only data structure we propose which resembles the data structures
used in classical DBMSs; however, due to the limited amount of data, we
believe that such data structure will seldom be useful.

4.1 Table Schema Annotation

In this phase the designer feeds the tool with the information needed to choose,
for each relation, one of the four data structures just presented.

As a matter of fact, while logical design involves all the parts of the database,
on card or allocated on the fixed devices, schema annotation is applied only
to those relations that will reside on the card. Thus, input of this phase is
the on-card table and fragment definition as produced by steps 4 and 5 of the
methodology.

The designer must input, for each on-card relation, the following information:

—number, type, and size (when not determined by the type, e.g., a variable
length character field) of the attributes; such information will provide records’
length (in bytes);

—expected relation size, that is, number of records (order of magnitude); and
—existence of an upper bound of the number of records during the stable phase

of the database life.

It is then possible to evaluate the amount of permanent memory that will be
required to store the data, without taking into account additional costs due to
data management. Such overheads will be estimated in the subsequent steps
of the design methodology.

Now all the relation schemas must be annotated with those aspects that
lead to the selection of the best data type and memory support. The purpose of
this annotation is to provide estimates of the elements that mainly impact on
access time and card endurance, in order for the tool to select the most suitable
physical data schema and implementation. For each table, we must know the
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Fig. 4. Expected operation frequency statements for the initial life of the database for the book-
marks relation. The percentages shown on the chart are determined by the input qualitative values.

following:

—Is it a sorted relation (no further indices): yes/no?
—Log-like (e.g. sorted on date/time)
—Other (specify sort key)

—What is the expected relative frequency of the following operations:
—Insert?
—Delete?
—Update?
—Select (sequential scan, equality selection, range selection)?

The designer is expected to give, for each relation, a qualitative composition
of the foreseen workload stating how data access will be distributed among the
possible query types. Note that it is not required to express a precise value;
instead what is needed is a percentage of one operation type with respect to the
others. Consider as an example the bookmarks relation in the PIA database.
As further discussed later in this paper, we can distinguish two phases in the
relation lifetime: an initial time, when the relation is empty and we are build-
ing our bookmarks list, and a subsequent phase, when we mainly search the
bookmark of the Web site we want to visit.

The designer might thus produce the following two “expected operation fre-
quency statements”:

—Initial/startup phase—phase I (Figure 4):
—Insert: high frequency;
—Delete: low frequency;
—Update: low frequency;
—Select:

Sequential scan: low frequency;
Equality search: medium frequency;
Range search: no operation.

—Stable phase—Phase II (Figure 5):
—Insert: low frequency;
—Delete: low frequency;
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Fig. 5. Expected operation frequency statements during the stable life of the database for the
bookmarks relation. The chart shows the percentages determined by the input qualitative values.

—Update: low frequency;
—Select:

Sequential scan: medium frequency;
Equality search: high frequency;
Range search: no operation.

The designer is expected to enter these parameters as qualitative values:
for each operation, whether the operation will never occur (no operation), occur
seldom (low frequency), occur moderately (medium frequency), or occur often
(high frequency) with respect to the possible operations. It has to be understood
that the terms low, medium, and high here have only relative significance. This
information is used to foresee the work balance between the types of operations,
also characterizing each table’s volatility in order to select the most convenient
memory support, especially since the technological aspects have a relevant im-
pact on the smart card performance and life. Such information is required for
each table belonging to the “on-card” relations, and it is provided for the long-
term, stable, life of the database.

This annotation step has been carried out on the PIA database, whose anno-
tated logical schema is presented in Figure 6.

The next step in the methodology is performed automatically on the basis of
the gathered information, as described in the following section.

4.2 Physical Design

The tool allocation policy interprets user’s annotations to select one of the avail-
able data structures for each one of the database relations. When processing
each relation and its annotations, one of the following situations is met:

(A) limited cardinality relations;
(B) ordered date/time field (maximum cardinality constraint);
(C) high number of expected records, ordered and with a high volatility (possi-

bly maximum cardinality constraint);
(D) none of the above.
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Fig. 6. The annotated logical schema for the PIA database. The table annotations will be used to
determine, for each relation, the most suitable physical data model.

In the physical data organization step, data structures are selected on the
basis of these four categories:

(A) Limited cardinality relations. When data cardinality is limited (below 10,
20), a heap organization is viable even for sorted data, since the overhead
of any complex structure maintaining the sorting is not costly, owing to the
short time required for scanning the whole data.

(B) Ordered date/time field (maximum cardinality constraint). The selection
of the circular list data model for relations with a date/time ordering and
a maximum cardinality constraint is straightforward.

(C) High number of expected records, ordered and with a high volatility. Re-
lations belonging to the third class are physically modeled by means of an
ordered data structure. It is possible to foresee a particular overhead in
maintaining data sorting during the initial phase of the database, when
modification operations (i.e., insert, update, delete) prevail with respect to
retrieval queries. As a consequence, the implementation of such an ordered
data structure will need to provide a mechanism to efficiently support mod-
ification operations, as discussed in Section 6.4.

(D) None of the above. When the relation cannot be referred to any of the
discussed situations, some classical data structure for the implementation
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of relational tables is adopted, possibly introducing indices when items of
data are mainly downloaded on the card at programming time and thus
produce mainly query accesses rather than data modifications, as we will
see what follows.

With respect to the PIA example, the applied annotation leads to the follow-
ing results:

TBL BOOKMARKS: SORTED
TBL HISTORY: CIRCULAR LIST
TBL WEBLOGIN: HEAP
TBL ACCESS: SORTED
TBL MOVEMENTS: CIRCULAR LIST
TBL PURSE: HEAP

5. ACCESS TYPES, OPERATIONS AND COSTS

In this section, we perform a comparison of the four adopted data types with
respect to the typical foreseen operations to be performed on the data of each
on-card table [Ramakrishnan and Gehrke 2000].

—Scan: fetch all records in the table.
—Search with equality selection: fetch all records that satisfy an equality se-

lection, for instance, “find the VisitedURL for day = #05/01/2001#.”
—Search with range selection: fetch all records that satisfy a range selection,

such as, for example, “find the movements with amount between $10 and
$100.”

—Insert: insert a given record into a table. Depending on how the records are
stored, ordered or not, the operation may require a shift of the records follow-
ing the position where the new record is inserted, that is, fetch all records,
include the new one, and write back all records.

—Delete: search the record(s) and remove it (them) by freeing the space. More
precisely, it is necessary to identify the record, fetch the block containing it,
modify it, and write the block back. Depending on the record organization,
it may be necessary to fetch, modify, and write back all the records following
the one under consideration.

—Update: search a given record(s), read it (them) and rewrite it (them).

In order to estimate the cost (in terms of access/execution time) of different
database operations:

—let B be the number of data blocks with R records per block, and C the
average time to process a record (e.g., to compare a field value to a selection
constant);

—let FRB, FWB, and BE be, respectively, the average time to read, write, and
erase a block from/to the Flash memory;

—let FRR and FWR be the average time to read and write a single record
from/to the Flash memory, respectively;
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Table III. Access Timing Costs Estimated for the Three Data Models with Respect to the Access
Operation

Heap data Sorted data Circular data
Scan TS H = B×R× (FRR +C) TS S =B×R× (FRR +C) TS C =B×R× (FRR +C)
Search

eq.
TSEQ H = 1/2 B×R×

(FRR+C)
TSEQ S = 2×FRR×

Log2 B+C×Log2 R
TSEQ C = 2×FRR×

Log2 B+R×Log2 C
Search

range
TSR H = B×R× (FRR+

C)+ (FRR+ RWR)×
n r

TSR S = TSEQ S+
(FRR+RWR)×n r

TSR C = TSEQ C+
(FRR+RWR)×n r

Insert TIN H = FRR×R+ C+
FWR

TIN S =TSEQ S+ (FRR+
FWR+RRR+
RWR)×R+C+BE+
1/2 B× (FRR+FWR+
RRR+ RWR+BE)

TIN C = FRR×R+C+
FWR

Delete TDE H = TSEQ H+
(FRR+FWR+RRR+
RWR)×R+C+BE

TDE S = TIN S TDE C = FRR×R+ C+
(FRR+FWR+RRR+
RWR)×R+C+BE

Update TUP H = TDE H TUP S = TSEQ S+
(FRR+FWR+RRR+
RWR)×R+C+BE

TUP C = TDE C

—and finally, for RAM access, let RRR and RWR represent the time to read
and write a record in RAM, respectively.

Table III reports the costs for accessing stored data with respect to the dif-
ferent organizations. The adopted algorithms exploit the existence of a sorting
field when available, and take into account the Flash technological requirement
of allowing the programming only of unwritten elements. As a result, the algo-
rithms (and consequently the costs) feature—when necessary—a procedure for
saving data in RAM, erasing an entire Flash block, and restoring from RAM
the part of the block that must be left unchanged. Table III summarizes access
costs for the first three discussed data models.

As far as heap relations are concerned, there is no specific issue that involves
any of the possible data accesses. Block erasure, which is actually the peculiar
aspect, occurs anytime a modification needs to be carried out on the stored data,
either to delete records or to update existing ones.

Sorted relations are the ones mostly affected by the technological constraint,
due to the need to rewrite the block containing the information to be updated,
and, for the insert and delete operations, eventually the adjacent blocks if the
records’ shifting involves more than a single block.

As far as circular list relations are concerned, let us notice that this kind of
relation is typically adopted for logging information, and thus the operations
most commonly performed are insertion of a new record after all the valid
ones. A pointer to the first free memory location is maintained so that it is not
necessary to carry out a search before inserting the record. Delete and update
operations are expected to occur seldom; nevertheless their costs have been
estimated as well.

Generic relations, with multiple indices, were presented in Bobineau et al.
[2000], where the authors proposed an indexing mechanism for smart cards,
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Fig. 7. (a) Domain index and (b) ring index as defined in Bobineau et al. [2000].

to make such indices as compact as possible: the idea applies to indices where
attribute domains have very small cardinality. This has not been covered by
our cost estimation: the reader may refer to Bobineau et al. [2000], where a
thorough cost analysis was provided.

In the domain index solution, attribute values are stored as pointers to the
domain value, stored only once in an appropriate domain table (Figure 7(a)).
In the ring index solution, Bobineau et al. [2000] proposed to use value-to-
tuple pointers within the domain table records in place of traditional tuple-to-
value pointers. This implements an index structure having a ring form, from
the domain values, through all the tuples having such a value (Figure 7(b)).
As an alternative, classical structures can be found in the literature [Elmasri
and Navate 1994; Wiederhold 1987]. Such indexed structures are, though, par-
ticularly complex and hard to manage, especially when considering that the
database on smart cards will seldom require complex join operations. Since the
analysis of possible real applications on smart cards suggests a limited neces-
sity of multiple indices data structures, which are particularly time and power
consuming when implemented on a Flash memory, no such structure is further
discussed in this work.

6. IMPLEMENTATION OF THE LOGICAL-TO-PHYSICAL DATA MODEL

The goal of the data structures implemented by the smart card DBMS is to
optimize performance and minimize power consumption and Flash memory
degradation while limiting area and computational overheads. Do note that
these aspects are strictly related, and that block erasure significantly affects
all these parameters.

According to the technical features of the storage device we have selected,
that is, Flash memory, we propose an implementation of the physical data model
previously discussed, based on the introduction of two elements:

—Use of deleted bit to carry out a logical rather than physical deletion of the
record, to minimize response time, power consumption, and the device degra-
dation implied by the physical block erasure required by a delete/update
operation;
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—Introduction of a number of dummy records per block, allowing the control
of the filling of a block and the organization of the records within the block.
Such techniques are already widely used in the management of several data
structures; noticeable examples can be found in B-trees of order n, where
each node can host a number of items varying from n/2 to n, or in static
hash tables where the filling of pages is controlled in order to avoid too many
collisions [Elmasri and Navate 1994; Wiederhold 1987].

These two aspects are discussed in Sections 6.1 and 6.2, focusing on their
benefits and costs, and comparing them with a straightforward implementation
of the identified data structures according to traditional approaches.

6.1 Use of deleted bit

The introduction of this bit positively affects performance every time a record
needs to be deleted and a logical elimination of the record can be performed
rather than the physical one. This technique has been adopted for the following
three basic situations:

6.1.1 Record Deletions. The deletion of a record in a block requires deter-
mining the location of the record (by means of a search) within a block and
the erasure and reprogramming of the block. In order to save time, a delete
can be managed by means of an additional bit per record, deleted bit, to be set
(programmed) to 1 when the record is deleted and not valid anymore.

This will cause the presence of invalid records within a block, which leads
both to a waste of space and a performance degradation in all operations involv-
ing a search. This problem is solved by performing a garbage collection-like op-
eration during each erase/program cycle of a block, where only the valid records
are programmed, according to the data structure (heap, ordered, . . . ). This so-
lution allows us to reduce the number of erasures to be performed, exploiting
the necessary ones to carry out also the pending delete requests.

6.1.2 Record Updates. Update operations are often seen as a sequence of
delete and insert operations. In our technological scenario, the delete operation
consists of programming deleted bit, and introducing a new record. In a sorted
relation and in the case of a circular list, when updating a random record (not
the last one) the insertion requires the erase/program operation for at least
one block; thus there is no gain in interpreting the update operation as an
independent delete followed by an insert.

On the other hand, if the insertion requires no ordering, as in the heap and
the circular list (when updating the last record) data organization, the update
consists of two program operations, a convenient solution in terms of both time
and endurance. As a result, depending on the type of data organization, the
update consists of the deletion of a record and the introduction of a new in-
dependent one, or of the erase/program of the block containing the involved
record.

6.1.3 Circular Lists Implementation. The circular list data organization
requires an append operation and a delete operation for each inserted element.

ACM Transactions on Information Systems, Vol. 21, No. 3, July 2003.



Design Issues for Smart Card Databases • 273

Fig. 8. Circular list implementation by means of a sliding window.

Independently of how the list is organized (single or multiblock), each update
requires the erasure of the block impacting energy consumption, endurance
and performance.

Let j denote the number of records to be provided by the circular list2 and k
the actual number of physical records used to implement the mechanism. The
user view of data is obtained by means of a sliding window j records long, while
the actual space allocated to the circular list is k records long. In this way, the
number of data observable by the user is constant, equal to j, and independent
of time. This data organization allows us to save energy and maxime perfor-
mance, but consumes space. Figure 8 shows data organization and its potential
evolution in the case of k = 2 ∗ j ; the gray area represents the sliding window.

Let us assume the initial situation shown in Figure 8(a) with the j elements
already inserted; when a new element is appended, the first valid element of
the list is deleted and the window slides (the situation in Figure 8(b)). After
k − j appends (Figure 8(c)) the available space is used up and a block erase
has to be performed before a new append can be completed (Figure 8(d)). It is
worth noting that the erase operation has period k − j and is independent of
the number of blocks involved.

6.2 Use of Dummy Records

By further exploiting the idea of reducing memory modifications by deleting
records logically rather than physically (except when necessary), we introduce
a storage management policy that “leaves” unused records, so that subsequent
insert operations requiring an ordering may be performed without moving the
preexisting records. The term dummy record has been selected to identify these
unused records among the ones containing the relation data.

6.2.1 Sorted Data Structure Implementation. Insert operations on a sorted
relation are characterized by a high probability to cause a block erasure in order
to insert the new record (unless an append situation occurs) and eventually
cause the adjacent and following blocks to be erased and reprogrammed too.

2It is worth noting that it is not relevant whether the physical elements are concentrated into a
single block or are distributed on more blocks.
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Fig. 9. The buffer of d dummy records out of the n records of the block.

This (these) block(s) erase/program task has (have) a significant overhead
in terms of time, power, and endurance. Indeed, the analysis of the actual op-
erations to be carried out relates to the general considerations presented in
Section 5, with the only exception related to the fact that the entire block is
erased when the operation requires it. The use of deleted bit and its impact
on the operation costs is straightforward; thus, our physical implementation
policy has envisioned two alternative physical data organizations to limit the
overall number of erase/program operations, both based on the use of dummy
records.

For each n-records sized block of memory, d empty records are used as buffers
to be left empty and used as the block gets filled; the aim of these records is to
reduce the number of blocks involved by the insert operation, possibly to one
block, the one where the record is to be inserted. Consider the following situation
with respect to the insert operation. In this policy, for the insertion of the first
n records, the existence of the dummy buffer does not introduce any difference
and Block 1 is totally filled. When the next record needs to be inserted, the total
of n+ 1 records will be distributed between the two blocks (two erase/program
operations) so that in Block 1 there is a buffer of d empty records and d + 1
records are stored in Block 2. The next insertion will most probably (unless an
append occurs and only a program operation is performed) require modifying
(erasing and programming) either Block 1 or Block 2, since now there is room
in the buffer of Block 1 (e.g. Figure 9). Thus, the main difference in the behavior
of the data structure with respect to a structure with no dummy records can
be seen after the first n records are inserted, introducing a different number of
erase/program operations. Clearly, there is a complexity overhead due to record
management and to the need for additional counters for keeping track of the
current space in the blocks; moreover, depending on the location of the dummy
buffer, there is an impact on read operations.

Different scenarios have been taken into consideration, with respect to the
position of dummy records. Considering the locality of dummy records, the al-
ternatives are as follows:

—dummy records are all adjacent, either at the beginning or at the end of the
block, or

—dummy records are distributed in the block.
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The policies are described in the following two sections, and the simulations
of their behaviors are compared in Section 6.4.3.

6.2.2 Adjacent Dummy Records Policy. By keeping all used records adja-
cent to one another (as well as the dummy ones), search operations are efficient,
since the scanned records are only the valid ones; in fact, given x valid records
out of the total n records of the block, the cost of a search relates to x rather
than to n.

Delete. deleted bit is programmed. Cost: search + program.

Update. The block is erased and programmed with the modified record.
Cost: search + erase + program. It is worth noting that no overflow ever occurs
in the following block.

Insert. The operation cost, when involving a single block, is that of a search,
plus the cost of a program and, if it is not an append kind of insertion, there is
the added cost of the erase. Altogether, the costs are as follows:

—Insert (append): search + program;
—Insert (no append): search + erase + program.

In case there are no dummy records available, this operation may cause an
overflow in the block where the new record is to be inserted. Actually, depending
on the emptiness level of the following blocks, a waterfall mechanism may start
to redistribute records in the blocks. In the worst case, all the blocks of the
relation need to be erased and programmed. Do note that, depending on the
distribution of the valid records, it might happen that, when inserting a new
record, if the following blocks are full (and thus there are free records in the
preceding blocks, otherwise the insertion would be forbidden), even a block
preceding the one where the record is to be inserted needs to be erased and
programmed.

Insertions are managed as follows: the first n records are inserted in the first
block. When the n + 1th record needs to be inserted, n − d records remain in
the first block and, d + 1 are programmed in the second block; as a result, the
first block is erased and programmed, while the second one is programmed.

The next d insertions require the erasure of a single block (they possibly can
fit all in the first block).

When the total number of valid records of all blocks of the relation reaches
(n−d )×b, two approaches can be adopted: either the remaining dummy records
are redistributed among the blocks or no further movement of records is per-
formed in order to provide a limited number of dummy records per block. Of
course, when the number of valid records is equal to n× b, no further records
can be inserted.

6.2.3 Distributed Dummy Records Policy. By considering an even distribu-
tion of the records to be inserted with respect to the sort key, the use of adjacent
dummy records limits the number of blocks involved in the operation to one.
Nevertheless, in order to perform the insertion of a record in the correct order,
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Fig. 10. Distributed dummy records per block to reduce the number of program/erase operations.

if all records are inserted adjacent to one another, the probability of erasing the
block that will contain the record is very high.

As a consequence, in order to keep the probability of block erasure low, the
dummy records are evenly distributed through the block so that each record
is inserted according to the defined order, leaving empty records between the
existing records in the block. This is achieved by means of an address-mapping
function (similar to a hash function) that, given the sort key value, determines
the address in the block of the record to be inserted (Figure 10).

The sequence shown in Figure 10 refers to four insert operations in an or-
dered fashion: each time an insert is performed, the address-mapping function
is evaluated on the value of the field with respect to which ordering is main-
tained. The address-mapping function is implemented in hardware exploiting
the additional spare logic available in the smart card architecture.

To appreciate the effectiveness of the use of dummy records, consider the
diagram shown in Figure 11, where each tile represents a block erasure due
to an insert operation. As an example, consider the traditional sorted relation
management (first diagram). After the first three operations, a block erasure
occurs on the sorted relation with no particular management policy; the same
occurs with the adoption of the deleted bit policy. Such an event does not occur
until the 30th operation, when dummy records are used.

The introduction of deleted bit reduces the number of block erasures (26)
with respect to the traditional, straightforward approach (31); the adoption of
dummy records significantly improves the performance, requiring only seven
erasures, confirming the expected results.

6.3 Overheads

The introduction of the proposed logical and physical implementation strategies
are characterized by costs in terms of area for storing the additional information
and management for maintaining a consistent data and control information.

6.3.1 Deleted and Validity Bits Implementation. The additional bits for
managing records with both the deleted bit strategy and the validity bit strat-
egy (associated with the dummy records policy) have been represented as part
of the data record. Such a representation is a logical one: at the physical level,
in order to optimize control bit manipulation, we group them at the beginning
(or at the end) of a memory block, as shown in Figure 12.

This separation between control bits and data allows one to optimize the
access to valid records and to delimitate the range of action on the memory
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Fig. 11. Block erasure operations caused by a sequence of access operations (insert, select, delete,
and update) on a sorted relation; each tile represents one block erasure. Three different data
structures are compared: sorted, sorted with deleted bit, sorted with dummy records.

Fig. 12. Flash memory block organization with specific records for control bits (deleted and/or
validity) and data.

block for updating the status of a record. It is worth noting that both types
of control bits need to be written when a record is first valid and when it is
deleted. Thus data record modification implies the programming of control bits,
never the erasure, unless the record needs to be physically deleted. In such a
case, though, the entire block is erased together with its control bits. As a result,
the programming of control bits and their storage in nonvolatile memory does
not introduce any overhead in terms of additional block erasure operations; the
overhead only consists of the memory block space devoted to such accessory
information.
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6.3.2 Counter and Pointer Management. For the circular list data struc-
ture and for the concentrated dummy records strategy, additional information
indicating the first available data record is necessary and needs to be stored in
nonvolatile memory as well. Such a requirement leads to the reservation of a
control memory block for hosting all the pointers. In order to reduce the number
of update operations on the NVM it is possible to investigate the possibility of
loading such a block of information into RAM at the beginning of the applica-
tion operations and to keep up-to-date information there. Immediately before
terminating the application, the memory block with the pointers is updated,
dumping the information stored in RAM.

7. EXPERIMENTAL EVIDENCE

A simulator has been developed, modeling the CPU, RAM, and Flash memories,
and the system bus, to evaluate the behavior of the proposed data structures and
their impact on the parameters determining performance, power consumption,
and response time. More in detail, the user can characterize the system model
in terms of the following:

—architectural model;
—Data and address bus;

—memory model:
—Flash memory block size/number;
—RAM memory size;

—data model:
—relation cardinality,
—record size;

—Model of the operations performed on the data:
—number of select/delete/update operations,
—Data set (random generated/user provided).

The evaluation parameters taken into consideration are as follows:

—number of read/written bits (related to response time/power consumption),
—number of bits on the data bus (related to power consumption),
—number of changing bits on bus (related to power consumption),
—number of block erasures (related to response time/power consumption), and
—area.

Once the architecture and data structure have been selected, it is possible
to simulate the performance and costs of the adopted data structure either on
randomly generated or on user-defined input data. The analysis of the experi-
mental results is reported in the next sections, for a complete evaluation of the
proposed approach.
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7.1 Benefits and Costs Evaluation When Using deleted bit

The introduction of deleted bit improves performance but introduces costs in
terms of space overhead and computational complexity (and consequently in-
creases response time). Space overhead is deleted bit itself, one for each record,
while computational overhead refers to the time necessary to control deleted bit
in order to determine if the record needs to be handled or not. A set of exper-
iments has been carried out to compare the traditional heap and circular list
implementations to the proposed implementations adopting deleted bit.

The experimental setup for this comparison adopted for all the analyses
we carried out has been built by randomly generating the data set, and by
applying a mixed sequence of access operations to simulate a real workload. For
each emulated situation 50 different simulations have been repeated, finally
reporting the mean value. Figure 13 shows the results for the heap relation case.

The graph in Figure 13(a) shows the average probability of block erasures
that occurred during a sequence of 100 operations inserting, deleting, updat-
ing and selecting data. The graph in Figure 13(b) shows the number of block
erasures occurring during a single simulation in the traditional and in the
deleted bit case. The graphs in Figures 13(c) show the number of read/write
operations on the Flash memory for the same sequence of operations and the
average read/written kbytes from Flash in order to perform such operations,
respectively.

As expected, in the traditional implementation, each delete and update op-
eration causes a block erasure, and the situation does not change during time,
since the Flash memory block only contains valid records. Things are different
in the deleted bit implementation. At the beginning, record deletion and update
are performed by invalidating the current record and, in the case of an update,
the insertion of the modified record. This behavior does not force any block era-
sure until the moment when there are no spare records in the block. At that
point, a block erasure occurs, a garbage-collection-like operation occurs, and
the memory block is left with only valid records. The probability that this event
occurs before the first 50 to 60 operations is zero with respect to the simulation
results.

Clearly this behavior somewhat depends on the data set used and the se-
quence of operations, but the use of 50 different simulations should limit their
influence. The graph of the average probability does not show that, once the
block erasure occurs, the probability goes back to zero until the subsequent
block erasure, exposing a quasiperiodical behavior. Therefore, the two traces
of block erasures are reported in the middle graph, to better highlight such a
behavior. In order to expose such a periodical occurrence in the case of the heap
implemented with the deleted bit approach, the test sequence was composed of
400 operations.

As can be noted, the introduction of deleted bit reduces both the amount of
accessed data and the number of block erasures, thus leading to a performance
improvement and to reduced power consumption. Specifically, for the set of
reported experiments, there was an average reduction of 15% for read operation
and of 27% in write operations when using deleted bit.
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Fig. 13. Performance impact due to the introduction of deleted bit with a heap relation.

Simulation has also been carried out with the distributed dummy physi-
cal implementation, without achieving significant results: the number of era-
sures was comparable to that of the traditional implementation, and sometimes
worse. This is the result we expected: maintaining an ordered relation is ex-
pensive and only in exceptional situations can such costs be balanced by block
erasures caused by a highly volatile heap relation.
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Table IV. Access Timing Costs for the Different Sorted Data Policies

Adjacent dummy/No dummy Distributed dummy
Scan B×TR× (FRR+C) B×R× (FRR+C)
Search eq. 2×FRR×Log2 B+C×Log2 TR 1/2B×R× (FRR+C)
Search range TSEQ EQ+ (FRR+RWR)×n r B×R× (FRR +C)+ (FRR+RWR)×n r
Insert PCD× (FRR×TR+C+FWR)+

(1–PCD)×TDE

PDD× (FRR×R+C+FWR)+
(1− PDD)×TDE

Delete TSEQ EQ+ (FRR+FWR+RRR+
RWR)×R+C+BE

TINS

Update TDE TSEQ EQ+ (FRR+FWR+RRR+RWR)×
R+C+BE

7.2 Benefits and Costs Evaluation When Using Dummy Records

The adoption of dummy records reduces time and power consumption when in-
troducing new records in a sorted relation, causing possible performance degra-
dation in the search task due to the presence of nonsignificant records (the
dummy ones) that nevertheless need to be recognized as such. Table IV shows
a comparison of the costs with respect to the three physical data organizations
discussed above. A few additional notations are introduced, to distinguish be-
tween valid, deleted and dummy records, and precisely:

—DR: number of deleted records;
—VR: number of valid records;
—TR: total number of programmed records (valid or deleted).

It is worth noting that when a relation fits completely on a single block only
the distributed and no dummy organizations need to be considered, since the
adjacent dummy organization provides the same performance as the no dummy
one.

These formulas do not include the pointer to the last valid record (adja-
cent dummy policy) and the valid bit (distributed dummy policy) management
contributions, considering that such data are loaded into the CPU before pro-
cessing the records, thus requiring a unique additional reading operation from
the Flash memory. Nevertheless, such contributions have been explicitly taken
into account during simulation, where the count of the number of read and
written bits also includes access cost for control information.

The two dummy records management policies have been simulated in order
to compare their performance; results for the search and insert operations are
shown in Figures 14(a) 14(b).

There is still a final consideration: there are two phases in the life of a smart
card database: an initial transient phase, when data is mainly inserted and
updated, and a second—more stable—phase, where data is mainly accessed
for retrieval. As a consequence, the suitability of a data structure for a given
relation may change over time, since the expected frequency of the operations
characterizing the two phases would lead to the selection of different data struc-
tures and of their related algorithms.

Power consumption maintains a significant role at all times. When consid-
ering the first transient phase, data structures and algorithms are targeted to
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Fig. 14. Simulation of the search with equality and insert times as a function of the number of
records in a block.

Fig. 15. Suitability areas for the considered policies when analyzed on a single block.

limit the number of memory block erasures, identifying a satisfying tradeoff
with respect to space occupation. In the second phase, efficiency in retrieval
and data size are predominant aspects. Figure 15 shows a comparison between
the different dummy records allocation policies with respect to the mix of oper-
ations in the workload.

Since the distributed dummy records approach seems to perform signifi-
cantly better during the first initial phase, we carried out a set of experiments to
highlight this situation, by comparing the normal (traditional), the deleted bit
(and no dummy), and the distributed dummy solutions, as we already showed
in Section 6.3.2. The results are reported in Figure 16, where a sequence of
250 operations has been applied to the three physical data structures, starting
from an empty memory. One hundred simulations for each setup have been
performed to achieve the values of the probability of block erasures. A different
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Fig. 16. Performance comparison for a mixed sequence of operations: the distributed dummy solu-
tion is well below the normal and deleted bit solutions, significantly reducing the number of block
erasures required to maintain a sorted relation.

representation of the results with respect to the one used in Figure 11 has
been adopted to better point out the differences between performances. For the
sake of clarity, the adjacent dummy approach is not reported leading to results
similar to the deleted bit ones.

As can be seen in Figure 16, the distributed dummy requires a lower num-
ber of block erasures (bottom trend line), followed by the deleted bit and nor-
mal implementations, during the entire sequence of operations. This will lead
to reduced power consumption and response times in performing the desired
operations.

It is worth noting that the deleted bit solution, which significantly improves
a heap relation, does not provide the same relevant advantages in the case of
a sorted relation. As has already been pointed out, in fact, the maintenance of
the ordering forces many modifications in the relation records, thus requiring
frequent block erasures. Yet, when the volatility of data lowers, that is, in the
second phase of the database life, when data is mainly retrieved and seldom
modified, the use of deleted bit could substitute for the dummy solution in order
to lower costs without requiring too many block erasures.

7.3 Overall Evaluation

Each one of the proposed logical and physical data structures has been charac-
terized in terms of costs and benefits, in order to be able to compare the different
solutions for each relation while trying to identify the most promising database
implementation. Each of the significant elements has been introduced as a con-
tribution to a cost function that computes the cost of each implementation and
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identifies for each relation the most convenient solution, exploring the entire
solution space.

Such a cost function is also used to evaluate the performance and costs of
the possible approaches also considering the expected volatility of relations (the
number of changing records within a relation during time) to explore the possi-
bility of adopting different physical data structures based on the “evolutionary
phase” of the relation, initial/startup, or stable phase.

8. CONCLUSIONS AND FUTURE DEVELOPMENTS

This research proposes a methodology for smart card database design using
Flash-EEPROM storage; the process is strongly driven by the technological is-
sues, which impose a very careful design on the logical and physical data struc-
tures in order to meet the constraints the smart card architecture introduces,
and to provide satisfactory performance.

In this paper we concentrated on the logical-physical smart card database
design phase, with attention to the most appropriate data structures and algo-
rithms that must be made available for the database designer to choose. Our
analysis pointed out that there are several factors guiding the selection of the
most suitable data structures when deriving the physical database design from
the annotated logical schema: power consumption, endurance, performance,
physical size requirements.

We examined a number of data structures with respect to the insertion,
search with equality, search with range selection, and delete and update opera-
tions, analyzing their features in terms of time performance and memory size.
Furthermore, in order to reduce block erasures that, in Flash-EEPROMs, are
lengthy, power-consuming, and life-shortening operations, we focused on the
insertion operation in sorted data structures. We introduced a set of dummy
records and compared two different policies for their allocation.

We found that the performance of the two allocation policies differ with re-
spect to the mix of operation types. In particular, the distributed dummy records
policy is well suited at times when the database contents undergo deep changes,
whereas the no dummy or adjacent dummy records policies are suited when
most of the operation involves retrieval queries. Simulation results supporting
the described behavior are shown.

Our proposal focuses on the logical and physical data structures designed to
support a database approach for managing data stored in a smart card. Future
work on the methodology will address the following aspects:

—the “upper parts” of the methodology tree, in order to find design, fragmen-
tation and allocation criteria for the different logical units (e.g., tables) of the
smart card database;

—ad hoc architectural enhancements, with particular attention to the smart
card processor, to the instruction set, to power consumption, to the possibility
of implementing different storage technologies on the same card in order to
benefit from their peculiarities, and to the analysis of other data management
policies for performance optimization.
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We will also investigate the following other interesting research issues re-
lated to smart card technology:

—transaction management to guarantee data consistency, especially useful for
situations where a card is disconnected (e.g. extracted from the reader) before
committing the transaction;

—synchronization between the smart card database and the central one, hosted
by a server, when smart card data processing is performed off-line.

It is important to notice that the proposed design methodology can be adopted
independently of these last two points, since many applications do not require a
central server database at all, while others do not need implementation of a full
transaction environment, only requiring a minimal amount of data consistency.
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