
State Dependency Issues in Evaluating

Distributed Database Availability *

187

F a b i o A. S C H R E I B E R
lstituto di Matematica, University of Parma, 43100 PARMA,

ltalv

Quantitative evaluation of availability in distributed data-

base systems must take into account both hardware and soft-

ware failures. Therefore parameters such as the failure and the

recovery probabilities must be evaluated for each "component"

of the system.

The most difficult problems arise when the evaluation pro-

cedure has to deal with failure mechanisms which functionally

depend on the state of the system.

In this paper, after a short introduction to a general meth-

odology for availability evaluation, an example of state-depen-

dent fault mechanism is described together with a technique for

evaluating its impact on the life of the whole system.

Keywords: availability, distributed databases, Markovian mod-

els, state-dependent failure rates, system dependent

failure mechanisms, time-outs.

Fabio A. Schreiber received the Dr.
Ing. degree in Electronic Engineering
from the Politecnico di Milano in 1969.
Since then, he has been with the Com-
puter Science Laboratory at the Dipar-
timento di Elettronica of the Poli-
tecnico di Milano, as an assistant and
then as an Associate Professor of Ap-
plied Electronics. Since 1981 he is Full
Professor of Computer Science at the
Mathematical Dept. of the University
of Parma.

His main research interests are in
the field of Distributed Informatics and Information Systems.
His current researches include performance and reliability
evaluation of distributed computing systems. He is involved in
the development of a distributed DBMS sponsored by the
Italian National Science Council.

He has authored more than forty papers on these topics and
has been invited as a speaker to many workshops and con-
ferences. He has consulted for several companies and university
installations on advanced system design. He is the Editor-in-
Chief of Rivista di Informatica, the journal of the Italian
Association for Automatic Computing.

* This work has been partially supported by the DATANET

project of the Italian CNR Progetto Finalizzato Informatica,

and by Ministero Pubblica Istruzione (fondi 40%).

North-Holland

Computer Networks 8 (1984) 187-197

1. Introduction

The development of several prototype Distrib-

uted Database Management Systems (DDBMS)

put into evidence a set of problems bound to the

reliability of the distributed system and to the

availability of the physical Databases at the differ-

ent sites.

The goal of obtaining a very high availability of

the overall system (i.e. a very high probability that

the system operates within a time interval - called

the mission time) stimulated researchers to design

rather sophisticated architectures and related re-

covery procedures which could survive a number

of multiple failures [1,4-6,9].

However, mechanisms to assure availability -

besides being effective in their primary goal -

should not cause a large overhead, in order to keep

a good level of performance. Therefore a good

compromise must be attained between the availa-

bility for the Distributed Database (DDB) (which

for many DDB applications is rather low if com-

pared with the 1 hour stop in 40 years required for

telephone switching equipment) and acceptable

throughput and response times. To obtain such a

compromise, we must be able to quantitatively

evaluate the DDB system availability, a research

field which has been little explored.

In published research, it is generally assumed

that failures are independent from each other. This

assumption, even if reasonable as a first approxi-

mation in many systems, hides some state depen-

dent failures. These failures, in some cases, can

lead to a "domino effect" with catastrophic results

for the whole system (e.g. remember the great

black-out of the New York area in 1977).

However, while it is possible to conceive some

general models which allow for a quantitative

evaluation of the availability of a system affected

only by independent components failures, things

become much more complicated when failures de-

pend also on the system architecture resulting by

assembling such components and on the system

functional requirements (systemic errors/failures).

0376-5075/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

188 FA. Schreiber / Distributed Database A uailability

We feel that in such cases only some general

guidelines can be given to proceed toward the

model definition, but the detailed model must be

carefully determined case by case. A model for a

state dependence case arising in a distributed

database with partitioned and duplicated files is

described in [12].

This paper shortly reviews in a systematic way a

method for the quantitative evaluation of availa-

bility in a DDB, which was firstly presented in

[11]. Then the method is extended to the case of a

state dependent failure mechanism which results

from the interaction between functions at very

different levels in a DDB Management System.

Section 2. reports the main concepts and results

presented in [11]. Section 3. deals with the prob-

lems resulting from state dependent failures; a

case is presented of a systemic failure induced by a

time-out mechanism, and queuing theoretic results

are used to evaluate the state dependent transition

probabilities, which are the base for availability

evaluation.

2 . Q u a n t i t a t i v e E v a l u a t i o n o f A v a i l a b i l i t y

Let us define:

availability of the DDB with respect to a transaction

Ti

~ ' r i (t) = probability that the system performs 77

successfully at time t;

availability of the DDB

d (t) = probability that the system performs all

transactions successfully at time t

Let us suppose now that transactions can be

executed independently on disjoint sets of re-

sources. Therefore:

~ (t) = d T l (t)* ~ T 2 (t) * . . . * ~ T , (t) = n ~ T , (t)

(1)

Then, our goal is to evaluate the availability of

the system with respect to the generic transaction

77. To this end, the first step is to model the Ti

processing path as a set of connected components,

which, in our case are constituted by the data

items affected by the transaction and by the com-

munication paths linking the remote sites the data

are stored at [11]. If the hypothesis of indepen-

dence for transactions does not hold, the decom-

position of the problem expressed by (1) is not

possible and the availability of the DDB must be

evaluated for the transaction set as a whole, as we

shall see in section 3.2.

2.1. System Description

We suppose that a component is either up (state

1) or down (state 0); no other state is allowed. This

hypothesis is supported by the nature of many

fault detection mechanisms which, in most cases

(e.g. time-outs), are binary in nature. Furthermore

we shall consider a data item to be available if all

the hardware/software components, required for

accessing it, are available. We are not considering

here the access interference problem for shared

data items, which deserves attention by its own

[14].

A state of the system (as far as transaction I7 is

concerned) is determined as the set of the states of

its components. Therefore, given a system with N

components, we can describe its states by a 2 N

state vector of state words, N bits each, ordered in

a predefined way.

Let us define critical failure those failures or

sets of failures of the system components which

prevent 77 from being successfully committed.

To describe the state of the system we can

associate the State Vector with an ordered binary

column vector Cri, called the structure vector [2,3].

Elements of Cr, are zero if the corresponding state

represents a critical failure, one otherwise.

As an example, let us consider the following

system where four data items (x~ x4} are

redundantly stored at four different sites

{N, U4):

- site N 1 contains the database d 1 = (xl , x2, x 3 };

- site N 2 contains D 2 = (x2};

- site N 3 contains D 3 = {x2, x 3};

- site N 4 contains D 4 = (x 4 }.

To represent the relations among the compo-

nents (e.g. sites and communication lines) needed

in processing a particular transaction, we can build

an oriented acyclic flow diagram. Branches in the

graph represent system components. If two com-

ponents are both required to process Ti, they are

linked in a series branch in the flow-graph. If two

components are redundant, they are placed in

parallel branches. An initial branch represents the

site at which the transaction is entered, and a final

F.A. Schreiber / Distributed Database Availability 189

Table 1
State and Structure Vectors

State No State Vector

Host Sites State

NI N2

TLC Links State

N3 N4 2 1 2-3 2-4

Structure
Vector

1 0 0

2 0 0
3 0 0
4 0 0

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 0

60 0 1
61 0 1
62 0 1
63 0 1
64 0 1

1 1 0 1 1 1

1 1 l 0 0 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 1

125 1 1
126 1 1
127 1 1
128 1 1

1 1 1 0 0 0

1 1 1 0 1 1

1 1 1 1 0 0

1 1 1 1 1 1

vertex represents the ending of the t ransac t ion

ei ther by commi tmen t or by abor t ion .

Fo r the t ransac t ion to be executed there must

exist one comple te pa th from the init ial branch to

the final vertex (i.e., the f low-graph must be con-

nected).

With the f low-graph a boolean expression can

be associa ted in which the states of the compo-

nents are the logical var iables and they take value

" 0 " if the componen t is faulty, value "1" if it is

working. If two componen t s are serially l inked in

the f low-graph they are connected by an .AND.

ope ra to r in the boolean expression, while they are

connec ted by an .OR. opera to r if they are l inked

in parallel . Then the boolean expression can be

minimized with the fundamenta l theorems of

boo lean algebra.

Therefore, given a t ransact ion, the evaluat ion of

the boolean expression tells us if a given system

state represents a cri t ical failure for it. Then we

can say that the State Vector and the Structure

Vector represent the t ruth table of the boolean

expression.

A deta i led descr ip t ion of how the State and the

Structure Vectors are buil t can be found in [11].

Here we only show in Table 1 a par t ia l instance of

the two vectors for t ransac t ion T2 s tar ted at site 2,

reading da ta i tems x 3 and x4, and upda t ing at

least two copies of da t a i tem x 2 in the example

d is t r ibu ted Database . The comple te example is

worked out in [11].

2.2. System Evolution

Reliabi l i ty features of a componen t are often

expressed in terms of its M T T F (Mean Time To

Fai lure) and M T T R (Mean Time To Repair) or in

terms of their reciprocals : the Fai lure Rate (FR) X

and the Repa i r Rate (RR) tt (i.e. the t ransi t ion

rates).

F r o m the def in i t ion given at the beginning of

sect ion 2, we can compute avai labi l i ty at t ime t in

the fol lowing way

= p(t), (2)

where C ' is the t ransposed vector of C and p (t) is

a vector w h o s e j t h componen t , evaluated at t = t*,

gives the p robab i l i t y that the system be in the j - th

state at t = t*.

The evolut ion in t ime of p (t) is given by a

(discrete) Markov Law

p (t + l) = A * p (t) , (3)

where A is a square matr ix of o rder 2 u called the

190 F A. Schreiber / Distributed Database A vailability

transition matrix. Its a,j element gives the proba-

bility the system be in state i at time t + 1, being in

state J at time t. Synthetic,lly A can be expressed

as follows:

2 N (N - - 1) 2'v
A = Y'~ H a x <i) * e k , (14)

k=l i=1

where

H® is the Kronecker (or direct) product of two

matrices [8];
2 N

e k is the kth versor of a 2 N space, i.e. it is a

vector with 2 N components, whose k th entry is a 1

while the others are zeroes;
f() x (i) is] f , , if the ith element is up, while it is

[lr,,,r") [if it is down;

f (') is the probability X u) * At of failure during

the observation period At;

r u) is the probability #(') * At of recovery dur-

ing the observation period At.

Equations (1)-(4) allow us to evaluate the avail-

ability of the system. For more details and exam-

ples see [2,11].

3. The State Dependent Case

Up to now no mention has been made of how

transition probabilities are evaluated. If we sup-

pose failures to happen independently from each

other, then the transition probabilities appearing

in the transition matrix are those of each compo-

nent taken by itself. However, if failures depend in

some way on each other, in the most general case

each f(i) and each r u) must be a function of the

overall system state S

f < i > = f (i) (s) ; r (/) = r < i) (S) ,

and the complexity of the problem grows exponen-

tially with the number of components. However, if

we can indentify M smaller subsystems in such a

way as components belonging to the same subsys-

tem have dependent reliability behavior, while

components belonging to different subsystems are

independent (and luckily this is rather common),

we can apply a "divide and conquer" technique by

evaluating M simpler Markov chains Ps,, while the

global probability is obtained as

M
p (t + 1) = F l ® p s , (t + 1). (5)

/--1

So far as to the evaluation method. However the

real difficulty in complex systems as DDB is to

determine the functions f u) (S) and r (i) (S) . The

difficulty lies in the need of examining a large part

of the system and to determine, for each possible

failure, the consequences it has on other functions

or components. Therefore it will not be possible

to find a general methodology, but each type of

failure shall be treated by itself.

What we want to show in this paper is that state

dependency is really meaningful in a DDB system

and that dependencies may be tricky. To do this

we shall make use of a case example.

3.1. An Exa mp l e

An in-depth study and the corresponding im-

plementation in the field of DDB systems reliabil-

ity have been described in [5]. This system is

structured in several different layers, the lowest of

them (called R E L N E T) is totally devoted to create

a reliable communication system .. and some-

thing more. In fact, besides assuring message de-

livery and possibly their recovery, RELNET per-

forms site state monitoring and it maintains a

System Global Time, which is used also by func-

tions and mechanisms at higher levels (e.g., for

concurrency control in accessing data items).

The need of obtaining global synchronization

Transaction Management Level

I Transaction L [

Routing I- [

I

I
State I

Sensor I

. . . . i

!
I

!

! ll ime-0ut t !
]1 Mechanism Table7-- Watch

i

Fig. 1. The positive feedback loop.

F.A. Schreiber / Distributed Database Availability 191

poses very tight requirements on the response time

of some type of synchronization messages. If the

polled site does not answer within a given time,

a R E L N E T mechanism declares it crashed,

whatever the reason is for the delay, and a re-

covery procedure is started. This philosophy is not

peculiar of RELNET, but it is rather common in

many real-time process control systems, where time

plays an essential role in determining the correct-

ness of operation.

One of the causes which can be responsible for

an excessive delay is a momentary overloading of

the polled site, and it is well known, from queuing

theory, that response time increases exponentially

with the resource utilization factor.

Let us suppose that at a higher level of the

DDBMS a transaction management function take

advantage of the existence in the DDB of multiple

copies of data items to enhance the system's avail-

ability.

If the system is working in a heavy load condi-

tion, the case will happen that a site times-out and

is declared crashed. A primitive in the reliable

network layer (a Watch) will inform the Transac-

tion Manager of the failure; as a consequence, the

last will reroute transaction processing from the

failed site to other sites where copies of the re-

quired data items are available. This will result in

an abrupt load increase at sites already working at

limit load conditions. Therefore they will slow

down their response times, and eventually they

will time-out, thus being declared failed. This

mechanism is shown in Fig. 1, and while it is

inspired by the work on SDD-1, it is not repre-

sentative of all the sophistications which were in-

cluded in that system.

It is evident how this positive feedback, unless

broken by effective countermeasures, can lead to a

Domino Effect [13] and hence to the failure of a

large part of the system.

~ N2

n I
\ ;t,

N 2

r

I f

N 1

N 3

Fig. 2. The structural model for transaction T2.

192 t;:A. Schreiber / Distributed Database Availability

3.2. Evaluation of State-Dependent Transition Prob-

abilities

In this section we are going to determine how

the Transition Probabilities of a system compo-

nent depend on the state of the system as a whole,

when the type of failure we want to examine is

that presented in section 3.1.

We limit our analysis to site failures as a whole,

supposing that communication channel failures are

hided by the network's own recovery procedures.

However the extension to both site and communi-

cation failures, a n d / o r to failures of single parts of

the host computers, can be made quite easily, and

it affects mainly the state and the structure vec-

tors. Let us state the following:

Hypothesis 1. The failure mechanism described at

the end of sec. 3.1 has a propagation delay which

is much smaller than the time needed to recover a

failed site.

This hypothesis, which is valid with a good ap-

proximation for many software systems (tenths of

milliseconds against several seconds), allows us to

consider the system as being "without repair".

Therefore we can limit ourselves, at least in a first

time, only to the evaluation of the failure probabil-

ities f t~)(S) and of the probability that, after some

time, the system will reach a critical failure state.

Let us suppose that a transaction 77, originated

at some site, is to access data items stored at some

other sites and that some of these data items are

redundantly stored in multiple copies. For the

sake of simplicity, we can define a static routing

strategy for accessing the data items required by

each transaction. If there is just one copy of the

data item - needless to say - this will be chosen.

For multiple copy data items we can associate

each transaction with a priority table indicating,

for each data item, which is the first choice copy to

access, which the second choice (or first back-up),

etc. What is a back-up copy for a transaction can

be a primary for another one; so we must suppose

there is some activity for each physical data item.

How to choose priorities in order to obtain good

strategies is not in the scope of this paper.

Firstly, we must build the State and Structure

Vectors, introduced in section 2.1. For this pur-

pose, let us partition the sites of the system in the

following way:

N = { N t N u }, the set of system sites (host

computers);

N(')={N(~) N ~) } c N , the set of sites

relevant to transaction 77;

N~'fc (i), the set of "back-up" sites for site

N/~)~ N('); "back-up" sites meaning those sites

which store redundant copies of the data items

relevant to Ti.
Then we can model the system by a set of trees

(forest) as follows: (1) The root of each tree in the

forest represents a site N/i)~ N(i); and (2) The

leaves represent the r redundant copies n~(r of a

data item d, r = 0 meaning the primary copy.

Fig. 2 shows the trees for the example of section

2.1. For instance, site N 1 contains data items xl,

x 2, x 3. Only x 2 and x 3 are relevant to transaction

T2. x 2 is stored in two other physical copies,

besides the one in Nt, while x 3 is stored in just one

more copy, and they all can serve as back-up

copies.

Such a forest represents a structural model of

the transaction 77 as to its behavior with respect to

failures. The number of leaves # L is given by

#N~) D~

L = E E K i , (6)
j = l i=1

where

N ~i~ is the number of primary sites relevant to

77;

D i is the number of data items, relevant to Ti,

stored at site Nf;

Ki is the resiliency parameter, i.e. the number of

replicas of data item i.

We shall group the data items having the same

value of K into the same resiliency class. To avoid

unnecessary complexity, in the rest of the paper

we shall keep K constant for all the data items in

the database, so considering just one resiliency

class. This assumption does not affect generality

and can be easily removed, allowing a different

resiliency parameter for each data item.

Looking at the physical system, however, back-

up copies for different data items can be stored at

the same site. In a very first approximation, we

E(na) E~
"~I I' I I I I I"I I

Fig. 3. A service center,

I~ A. Schreiber / Distributed Database A t,ailabili O, 193

can think that the availability of a data item is

determined by the availability of the comput ing

equipment of the site at which it is stored. The

rationale for such an assumption lies in the use of

a hyerarchical modelling approach, which brings

from the availability values of each intervening

component (seek arm, disk controller, channel,

CPU, etc.) up to the availability values of the

whole "access path" to the data item [15]. There-

fore we must add a set of constraints of the form:

4 = n'j'~ = U " ' ~ U " ' . (7)
d , r ' , q

These constraints are shown by the dotted lines in

fig. 2, and by the external labels.

The problem having been decomposed in this

form, we can build the two vectors giving the static

description of the problem.

Let us come now to the failure mechanism. As

we said in sect. 3.1, we suppose that failures are

determined by a peak overload at one or more

sites. The rates at which sites time-out owing to

the overload add-up to their hardware failure rates.

For the purpose of this paper, we shall consider a

site and its workload as a server and its queue.

Let it be (fig. 3): E (<) = mean service time;

E(n~) = mean arrival rate; and tq = response time.

If the queue has exponentially distributed inter-

arrival and service times (M / M / 1 queue) the

probabil i ty that the response time exceeds a given

time t is [10]:

Prob(tq < t) = E X P [- (1 - p) * t / E (<)] , (8)

where o = E (n a) * E (t ~) is the utilization factor

for the server. The choice of a M / M / 1 model is

made just for ease of exposition; in fact a M / G / 1

model could fit as well, provided we could invert

the Lap lace t r a n s f o r m a p p e a r i n g in the

Pollaczek Khintchine transform equation [7].

Therefore, given a time-out T and a service time

E(t~), the probabil i ty that the time-out is exceeded

depends exponentially on the utilization factor of

the site. Fig. 4 shows the typical relationship be-

tween the server utilization factor and the response

time in a M / M / 1 model. It can be easily seen

from it that the higher is the utilization factor P0 of

the server, the higher is the probabili ty that even a

small overload A 0 will cause the site to fail.

We can evaluate the utilization factor P*, result-

ing from a rerouting of transactions to back-up

data items, in the following way.

Let us define the repartition coefficient a as the

amount of load each back-up copy has to cope

tq

site
down

site
up t o

~(t s)

~tq

I

I

I

I

~o ~
1 ?

Fig. 4. The workload dependent time-out mechanism.

194 F.A. Schreiber / Distributed Database Availability

N 2

! A !

N 4

Fig. 5. An example system.

with after the rerouting operation related to its

normal production workload. If the system is 1-re-

silient (i.e. there are two copies of each data item)

and the load is balanced between the two copies

during normal operation, then a = 2. If the system

is n-resilient with balanced load and this load is

equally subdivided among the n remaining copies

in case of failure, then a = (n + 1)/n. For more

complicated conditions of loading and load subdi-

vision, the a ' s can be given as a table function.

Let it be:

n'Np the mean arrival rate of the requests to a

given node Np for all the data items excluding

those interested at the rerouting operation;

n,j the mean arrival rate of the requests to the

back-up data item j belonging to the Resiliency

Class i;

a i the repartition coefficients for the Resiliency

Class i, then

p~vp(s)=E(n~p+~Oti~"~nij)*E(ts). (9)
i j -

Therefore, given a system as in fig. 5, the proba-

bility of having a utilization factor p* for node Np,
is equivalent to that of being in a given system

state S, and whether in such a state this node is

faulty or not depends in turn on the value of

p*(S) itself. Then the probability of a given node

to become faulty owing to the described mecha-

nism, Prob(FNe), is given by

Prob(FN,) = P rob(S) * E X P [- (1 - p*(S))

• TIE(t ,)] , (10)

where Prob(S) is the probability of being in state

S and T is the value of the time-out.

Let us suppose now that the probability of

failure of node N1 does not depend on the system

state (at least through the same mechanism we are

/

, Xl x I

Fig. 6. State Dependency Graph for the system in Fig. 5.

F.A. Schreiber / Distributed Database Availability 195

considering), so that we can evaluate it by means

of (3). By means of (10) we can then evaluate the

probabilities that nodes N2, N3, N4 be faulty and

therefore the probability of each resulting state.

The evaluation can be iterated as many times as

necessary to exhaust all the possible dependencies.

The dependencies themselves can be clearly put

into evidence by means of the state dependency

graph. This graph is so defined:

1. there is one vertex for each physical node Ni.

2. there is an oriented edge between any two nodes

Ni --, Nj such as the failure of Ni affects the relia-

bility behavior of Nj. Edges are labelled with the

resources which require the load transfer.

The State Dependency Graph for the example

of fig. 5 is given in fig. 6.

Then, if N2 enters a faulty state, we shall apply

(10) again to find out if N4 fails in turn owing to

the consecutive failure of N1 and N2. Failure

propagation ends when a dependency path has

been completely tested. In fig. 6 we can find paths

(U l , N2, U4, N3}, {Ul , N3, U4, N2}, and {Ul ,

N4, [N3, N2]}, where the bracketed sets are ordered

sets from left to right, while sets included in square

brackets represent parallel branches.

Such a procedure exhausts all the dependencies

for a given root node in the forest of fig. 2.

However, the example of fig. 5 does not consider

the fact that back-up nodes can be - in turn - the

root nodes for other parts of the given transaction

or, even worse, if the hypothesis of indepen-

dence of the transactions does not hold - for parts

of other transactions, so increasing the propaga-

tion effects. This case is described by more com-

plex cyclic graphs, as we shall see in section 3.4.

3.3. Total Transition Probabilities

Since each node Ni has a failure probability f~i~

due to hardware faults (see section 2.2), the proba-

bility of transition from a state Sk, in which Ni is

working, to a state Sj, in which it is faulty, is

Prob(Sk ~ Sj)= F (/ ~ " , pu,(Sk), T). (11)

Since the hardware failure and the time-out failure

mechanisms can be considered fairly independent,

probability theory gives us the expression of the

joint probability of one or the other of two events,

as follows:

f~"(Sk) = Prob(Sk --* Sj)

= f h ~ ' '+ Prob(FN,) -Jhr~i), Prob(FNi) (12)

As to the repair probabilities, they depend on the

type of failure and, in general, on the state. How-

ever as a first approximation, we can assume that,

for a given kind of failure, the repair probability is

weakly dependent on the state.

Therefore, given a set of repair probabilities

R t i)- (r (i) }, o n e for each kind of failure compo-

nent i can undergo, we can evaluate the total

repair probability as a linear function, weighting

them with the probability Yk of occurrence of each

kind of failure in the following way:

R

r~"= E y~r~'), (13)
k = l

where R is the cardinality of R °), and
R

~-~k=] "Yk = 1.

The probabilities f~i)(S) and r °) so obtained

are the values to be inserted as the a,j entries in

the A matrix of (3).

Fig. 7a. An example system.

196 F.A, Schreiber / Distributed Database Availability

L14~L43 "~

Fig. 7b. State Dependency Graph for the system in Fig. 7a.

3.4. A more complex example

While in the example of fig. 6 there was some

kind of hierarchy, since node N1 was considered

to fail first and the files stored on it were consid-

ered to be as primary copies, we can consider a

more complex example in which no node is

"privileged". Let us look at the system of fig. 7a

and let it be described by the State Dependency

Graph of fig. 7b. Obviously to pass from one

representation to the other we must know all the

data items requested by the transactions in the

system and their repartition coefficients. However,

as far as our computation is concerned, only the

loads switched between any two nodes are interest-

ing; we call L u the load switched from node Ni to

node Nj upon the failure of the former.

Fig. 7c shows the four different successions of

state dependency graphs which represent the sys-

tem when, leaving from the situation of fig. 7b,

successive failures (one at a time) require load

switching among the nodes and the degenerative

phenomenon described in sect. 3.1 takes place.

Notice that L;; in state Sh generally differs from

~L¢2

L ~ L 2 3

/ \

/i /i
~4 ~43

~ 2

L~Z Lt4 Z3Z LZl LZ=~

/____\ /---\

/
/

Fig. 7c. The succession of the State Dependency Graphs for the different degeneration paths.

F.A. Schreiber / Distributed Database A vailabihtv 197

L,; in state Sk owing to the different failure paths

followed by the system.

Since the transition matrix in Eq. (3) requires

the knowledge of the transition probabilities of

each component in each state, we must evaluate

relation (12) for all the working nodes in each

state. It is easy to see that the total number of

times (12) is to be computed is:

N

~_~ N ! / (N - - i)! (14)

i 1

The exponential complexity in N of (14) is

obviously a limit to the size of the system we can

consider. However we saw by (5) that the applica-

tion of a divide and conquer philosophy is often

possible, so that N never reaches values which

make the evaluation computationally unpractical.

An actual failure path leaves from the situation

of fig. 7b and it proceeds down the tree, choosing

one branch at a time, from one level to the other

until either it stabilizes itself at one of the system

states shown in fig. 7c, or it comes to the complete

black-out of the system (state 4~).

An analytic simulation program is being written

on a VAX/780 under Berkeley UNIX which

accepts as input the system parameters such as the

transition rates, service times, requests arrival rates,

time-outs values of each node, and the transaction

parameters such as the state dependency graph,

and the repartition coefficients, and will give as

output the system availability value.

This program will be used as an interactive

design tool, to determine systems parameters such

as the best allocation for back-up copies, the

optimal time-out values, the optimal repartition

coefficients.

4. Conclusions

The problem has been considered of obtaining

quantitative evaluation of availability in Distrib-

uted DB systems. The analysis can be useful in an

interactive process to study the effect of different

design solutions involving the number and the

allocation of duplicate data, the values of the

transition rates for the components of the system,

and the values for time-outs. It has been shown

how state-dependent failures can lead to

catastrophic effects if not carefully controlled. The

transition probabilities have been obtained for a

particular case.

Future work includes a generalization of the

methodology presented in this paper and exten-

sion to other kinds of state-dependent failures,

even if the feeling of the author is that there are

few possibilities to arrive to a very general model

which encompasses every kind of state-dependent

failure.

Acknowledgement

I am greateful to Prof. M. Santomauro and to

Ing. P. Gubian for the fruitful discussions we had

on this subject.

References

[1] P.A. Alsberg, J.D. Day: A Principle for Resilient Sharing

of Distributed Resources. 2nd Int. Conf. on Software En-

gineering, Dec. 1976.

[2] V. Amoia, G. De Micbeli, M. Santomauro: Computer

Oriented Formulation of Transition Rate Matrices Via

Kronecker Algebra. IEEE-Trans. Reliabilio,, 1981.

[31 R.E. Barlow, F. Proschan: Mathematical Theory of Relia-

bility. John Wiley & Sons, 1965.

[4] J.N. Gray: Notes on Database Operating Systems - in

Operating Systems: an Advanced Course, Springer Verlag,

1977.

[5] M.W. Hammer, D.W. Shipman: Reliability Mechanisms

for SDD-1, a System for Distributed Databases. ACM-

TOS, Vol. 5, n. 4, Dec. 1980.

[6] K.B. lrani, N.G. Kabbaz: A Model for a Combined Com-

munication Network Design and File Allocation for Dis-

tributed Databases. Proc. 1st Int. Conf. on Distrib. Comput-

ing Svsterns, Huntsville, Oct. 1979.

[7] L. Kleinrock: Queuing Theory-Vol. 1. John Wiley & Sons,

1975.

[8] P. Lancaster: Theory of Matrices. Academic Press, 1969.

[9] B.G. Lindsay, P.G. Selinger" Notes on Distributed Data-

bases. Advanced Course on Distributed Databases, Shef-

field City Polytechnic, 1979.

[10] J. Martin: System Analysis for Data Transmission. Pren-

tice- Hall, 1972.

[11] G. Martella, B. Ronchetti, F.A. Schreiber: Availability

Evaluation in Distributed Database Systems. Performance

Evaluation, Vol. 1, n. 3, North Holland, 1981.

[12] G. Martella, B. Pernici, F.A. Schreiber: Distributed

Databases Reliability Analysis and Evaluation. 2nd Syrup.

on Reliability in Distributed Software and Database Sys-

tems, 1EEE-CS/ACM, Pinsburg, July 1982.

[13] B. Randell: System Structure for Software Fault-Toler-

ance. IEEE-TSE, vol. 1, n. 2, June 1975.

[14] G. Martella, F.A. Schreiber: Improving Access Inter-

ference in Distributed databases. 18th Allerton Conference

on Communication, Control and Computing, Allerton House

Monticello (ILL), Oct. 1980.

[15] G. Martella, B. Pernici, F.A. Schreiber: An availability

Model for Distributed Transaction Systems. Internal re-

port, submitted for publication.

