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Quantitative evaluation of availability in distributed data- 

base systems must take into account both hardware and soft- 

ware failures. Therefore parameters such as the failure and the 

recovery probabilities must be evaluated for each "component" 

of the system. 

The most difficult problems arise when the evaluation pro- 

cedure has to deal with failure mechanisms which functionally 

depend on the state of the system. 

In this paper, after a short introduction to a general meth- 

odology for availability evaluation, an example of state-depen- 

dent fault mechanism is described together with a technique for 

evaluating its impact on the life of the whole system. 
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1. Introduction 

The development of several prototype Distrib- 

uted Database Management Systems (DDBMS) 

put into evidence a set of problems bound to the 

reliability of the distributed system and to the 

availability of the physical Databases at the differ- 

ent sites. 

The goal of obtaining a very high availability of 

the overall system (i.e. a very high probability that 

the system operates within a time interval - called 

the mission time) stimulated researchers to design 

rather sophisticated architectures and related re- 

covery procedures which could survive a number 

of multiple failures [1,4-6,9]. 

However, mechanisms to assure availability - 

besides being effective in their primary goal - 

should not cause a large overhead, in order to keep 

a good level of performance. Therefore a good 

compromise must be attained between the availa- 

bility for the Distributed Database (DDB) (which 

for many DDB applications is rather low if com- 

pared with the 1 hour stop in 40 years required for 

telephone switching equipment) and acceptable 

throughput and response times. To obtain such a 

compromise, we must be able to quantitatively 

evaluate the DDB system availability, a research 

field which has been little explored. 

In published research, it is generally assumed 

that failures are independent from each other. This 

assumption, even if reasonable as a first approxi- 

mation in many systems, hides some state depen- 

dent failures. These failures, in some cases, can 

lead to a "domino effect" with catastrophic results 

for the whole system (e.g. remember the great 

black-out of the New York area in 1977). 

However, while it is possible to conceive some 

general models which allow for a quantitative 

evaluation of the availability of a system affected 

only by independent components failures, things 

become much more complicated when failures de- 

pend also on the system architecture resulting by 

assembling such components and on the system 

functional requirements (systemic errors/failures). 

0376-5075/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland) 



188 FA.  Schreiber / Distributed Database A uailability 

We feel that in such cases only some general 

guidelines can be given to proceed toward the 

model definition, but the detailed model must be 

carefully determined case by case. A model for a 

state dependence case arising in a distributed 

database with partitioned and duplicated files is 

described in [12]. 

This paper shortly reviews in a systematic way a 

method for the quantitative evaluation of availa- 

bility in a DDB, which was firstly presented in 

[11]. Then the method is extended to the case of a 

state dependent failure mechanism which results 

from the interaction between functions at very 

different levels in a DDB Management System. 

Section 2. reports the main concepts and results 

presented in [11]. Section 3. deals with the prob- 

lems resulting from state dependent failures; a 

case is presented of a systemic failure induced by a 

time-out mechanism, and queuing theoretic results 

are used to evaluate the state dependent transition 

probabilities, which are the base for availability 

evaluation. 

2 .  Q u a n t i t a t i v e  E v a l u a t i o n  o f  A v a i l a b i l i t y  

Let us define: 

availability of the DDB with respect to a transaction 

Ti 

~ ' r i ( t )  = probability that the system performs 77 

successfully at time t; 

availability of the DDB 

d ( t ) =  probability that the system performs all 

transactions successfully at time t 

Let us suppose now that transactions can be 

executed independently on disjoint sets of re- 

sources. Therefore: 

~ ( t )  = d T l ( t  )* ~ T 2 ( t ) * . . .  * ~ T , ( t )  = n ~ T , ( t  ) 

(1) 

Then, our goal is to evaluate the availability of 

the system with respect to the generic transaction 

77. To this end, the first step is to model the Ti 

processing path as a set of connected components, 

which, in our case are constituted by the data 

items affected by the transaction and by the com- 

munication paths linking the remote sites the data 

are stored at [11]. If the hypothesis of indepen- 

dence for transactions does not hold, the decom- 

position of the problem expressed by (1) is not 

possible and the availability of the DDB must be 

evaluated for the transaction set as a whole, as we 

shall see in section 3.2. 

2.1. System Description 

We suppose that a component is either up (state 

1) or down (state 0); no other state is allowed. This 

hypothesis is supported by the nature of many 

fault detection mechanisms which, in most cases 

(e.g. time-outs), are binary in nature. Furthermore 

we shall consider a data item to be available if all 

the hardware/software components, required for 

accessing it, are available. We are not considering 

here the access interference problem for shared 

data items, which deserves attention by its own 

[14]. 

A state of the system (as far as transaction I7 is 

concerned) is determined as the set of the states of 

its components. Therefore, given a system with N 

components, we can describe its states by a 2 N 

state vector of state words, N bits each, ordered in 

a predefined way. 

Let us define critical failure those failures or 

sets of failures of the system components which 

prevent 77 from being successfully committed. 

To describe the state of the system we can 

associate the State Vector with an ordered binary 

column vector Cri, called the structure vector [2,3]. 

Elements of Cr, are zero if the corresponding state 

represents a critical failure, one otherwise. 

As an example, let us consider the following 

system where four data items (x~ . . . . .  x4} are 

redundantly stored at four different sites 

{N, . . . . .  U4): 

- site N 1 contains the database d 1 = (xl ,  x2, x 3 }; 

- site N 2 contains D 2 = (x2}; 

- site N 3 contains D 3 = {x2, x 3}; 

- site N 4 contains D 4 = (x  4 }. 

To represent the relations among the compo- 

nents (e.g. sites and communication lines) needed 

in processing a particular transaction, we can build 

an oriented acyclic flow diagram. Branches in the 

graph represent system components. If two com- 

ponents are both required to process Ti, they are 

linked in a series branch in the flow-graph. If two 

components are redundant, they are placed in 

parallel branches. An initial branch represents the 

site at which the transaction is entered, and a final 
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Table 1 
State and Structure Vectors 

State No State Vector 

Host Sites State 

NI N2 

TLC Links State 

N3 N4 2 1 2-3 2-4 

Structure 
Vector 

1 0 0 

2 0 0 
3 0 0 
4 0 0 

0 0 0 0 0 0 
0 0 0 0 1 0 
0 0 0 1 0 0 
0 0 0 1 1 0 

60 0 1 
61 0 1 
62 0 1 
63 0 1 
64 0 1 

1 1 0 1 1 1 

1 1 l 0 0 0 

1 1 1 0 1 0 

1 1 1 1 0 0 

1 1 1 1 1 1 

125 1 1 
126 1 1 
127 1 1 
128 1 1 

1 1 1 0 0 0 

1 1 1 0 1 1 

1 1 1 1 0 0 

1 1 1 1 1 1 

vertex represents  the ending of the t ransac t ion  

ei ther  by commi tmen t  or by abor t ion .  

Fo r  the t ransac t ion  to be executed there must  

exist one comple te  pa th  from the init ial  branch to 

the final vertex (i.e., the f low-graph must  be con- 

nected).  

With  the f low-graph a boolean  expression can 

be associa ted in which the states of the compo-  

nents  are the logical var iables  and they take value 

" 0 "  if the componen t  is faulty, value "1"  if it is 

working.  If two componen t s  are serially l inked in 

the f low-graph they are connected  by an .AND.  

ope ra to r  in the boolean  expression,  while they are 

connec ted  by an .OR. opera to r  if they are l inked 

in parallel .  Then the boolean  expression can be 

minimized  with the fundamenta l  theorems of 

boo lean  algebra.  

Therefore,  given a t ransact ion,  the evaluat ion  of 

the boolean  expression tells us if a given system 

state represents  a cri t ical  failure for it. Then we 

can say that  the State  Vector and the Structure  

Vector  represent  the t ruth table of the boolean  

expression.  

A deta i led descr ip t ion  of how the State and  the 

Structure  Vectors are buil t  can be found in [11]. 

Here  we only show in Table  1 a par t ia l  instance of 

the two vectors for t ransac t ion  T2 s tar ted at site 2, 

reading  da ta  i tems x 3 and x4, and  upda t ing  at 

least two copies of  da t a  i tem x 2 in the example  

d is t r ibu ted  Database .  The  comple te  example  is 

worked  out  in [11]. 

2.2. System Evolution 

Reliabi l i ty  features of a componen t  are often 

expressed in terms of  its M T T F  (Mean  Time To 

Fai lure)  and  M T T R  (Mean  Time To Repair)  or in 

terms of their  reciprocals :  the Fai lure  Rate  (FR)  X 

and  the Repa i r  Rate  (RR)  tt (i.e. the t ransi t ion 

rates). 

F r o m  the def in i t ion  given at the beginning  of 

sect ion 2, we can compute  avai labi l i ty  at t ime t in 

the fol lowing way 

= p(t), (2) 

where C '  is the t ransposed  vector  of C and p ( t )  is 

a vector  w h o s e j t h  componen t ,  evaluated  at t = t*, 

gives the p robab i l i t y  that  the system be in the j - th  

state at t = t*. 

The evolut ion in t ime of p ( t )  is given by a 

(discrete)  Markov  Law 

p ( t + l ) = A * p ( t ) ,  (3) 

where A is a square matr ix  of o rder  2 u called the 
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transition matrix.  Its a,j element gives the proba- 

bility the system be in state i at time t + 1, being in 

state J at time t. Synthetic,lly A can be expressed 

as follows: 

2 N ( N - - 1  ) 2'v 
A =  Y'~ H a x <i) * e k , (14) 

k=l  i=1 

where 

H® is the Kronecker (or direct) product of two 

matrices [8]; 
2 N 

e k is the kth  versor of a 2 N space, i.e. it is a 

vector with 2 N components, whose k th entry is a 1 

while the others are zeroes; 
f( ) x (i) is ] f , ,  if the ith element is up, while it is 

[lr,,,r") [ if it is down; 

f ( ' )  is the probability X u) * At of failure during 

the observation period At; 

r u) is the probability #(') * At of recovery dur- 

ing the observation period At. 

Equations (1)-(4) allow us to evaluate the avail- 

ability of the system. For more details and exam- 

ples see [2,11]. 

3. The State Dependent Case 

Up to now no mention has been made of how 

transition probabilities are evaluated. If we sup- 

pose failures to happen independently from each 

other, then the transition probabilities appearing 

in the transition matrix are those of each compo- 

nent taken by itself. However, if failures depend in 

some way on each other, in the most general case 

each f(i) and each r u) must be a function of the 

overall system state S 

f < i > = f ( i ) ( s ) ;  r ( / ) = r < i ) ( S ) ,  

and the complexity of the problem grows exponen- 

tially with the number of components. However, if 

we can indentify M smaller subsystems in such a 

way as components belonging to the same subsys- 

tem have dependent reliability behavior, while 

components belonging to different subsystems are 

independent (and luckily this is rather common), 

we can apply a "divide and conquer" technique by 

evaluating M simpler Markov chains Ps,, while the 

global probability is obtained as 

M 
p ( t  + 1) = F l ® p s , ( t  + 1). (5) 

/--1 

So far as to the evaluation method. However the 

real difficulty in complex systems as DDB is to 

determine the functions f u ) ( S )  and r ( i ) (S) .  The 

difficulty lies in the need of examining a large part 

of the system and to determine, for each possible 

failure, the consequences it has on other functions 

or components. Therefore it will not be possible 

to find a general methodology, but each type of 

failure shall be treated by itself. 

What we want to show in this paper is that state 

dependency is really meaningful in a DDB system 

and that dependencies may be tricky. To do this 

we shall make use of a case example. 

3.1. An  Exa mp l e  

An in-depth study and the corresponding im- 

plementation in the field of DDB systems reliabil- 

ity have been described in [5]. This system is 

structured in several different layers, the lowest of 

them (called R E L N E T )  is totally devoted to create 

a reliable communication system .. and some- 

thing more. In fact, besides assuring message de- 

livery and possibly their recovery, RELNET per- 

forms site state monitoring and it maintains a 

System Global Time, which is used also by func- 

tions and mechanisms at higher levels (e.g., for 

concurrency control in accessing data items). 

The need of obtaining global synchronization 

Transaction Management Level 

I Transaction L [ 

Routing I- [ 

I 

I 
State I 

Sensor I 

. . . .  i 

! 
I 

! 

! ll ime-0ut t ! 
]1 Mechanism  Table7--   Watch  

i 

Fig. 1. The positive feedback loop. 
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poses very tight requirements on the response time 

of some type of synchronization messages. If the 

polled site does not answer within a given time, 

a R E L N E T  mechanism declares it crashed, 

whatever the reason is for the delay, and a re- 

covery procedure is started. This philosophy is not 

peculiar of RELNET,  but it is rather common in 

many real-time process control systems, where time 

plays an essential role in determining the correct- 

ness of operation. 

One of the causes which can be responsible for 

an excessive delay is a momentary overloading of 

the polled site, and it is well known, from queuing 

theory, that response time increases exponentially 

with the resource utilization factor. 

Let us suppose that at a higher level of the 

DDBMS a transaction management function take 

advantage of the existence in the DDB of multiple 

copies of data items to enhance the system's avail- 

ability. 

If the system is working in a heavy load condi- 

tion, the case will happen that a site times-out and 

is declared crashed. A primitive in the reliable 

network layer (a Watch) will inform the Transac- 

tion Manager of the failure; as a consequence, the 

last will reroute transaction processing from the 

failed site to other sites where copies of the re- 

quired data items are available. This will result in 

an abrupt load increase at sites already working at 

limit load conditions. Therefore they will slow 

down their response times, and eventually they 

will time-out, thus being declared failed. This 

mechanism is shown in Fig. 1, and while it is 

inspired by the work on SDD-1, it is not repre- 

sentative of all the sophistications which were in- 

cluded in that system. 

It is evident how this positive feedback, unless 

broken by effective countermeasures, can lead to a 

Domino Effect [13] and hence to the failure of a 

large part of the system. 

~ N2 

n I 
\ ;t, 

N 2 

r 

I f 

N 1 

N 3 

Fig. 2. The structural model for transaction T2. 
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3.2. Evaluation of State-Dependent Transition Prob- 

abilities 

In this section we are going to determine how 

the Transition Probabilities of a system compo- 

nent depend on the state of the system as a whole, 

when the type of failure we want to examine is 

that presented in section 3.1. 

We limit our analysis to site failures as a whole, 

supposing that communication channel failures are 

hided by the network's own recovery procedures. 

However the extension to both site and communi- 

cation failures, a n d / o r  to failures of single parts of 

the host computers, can be made quite easily, and 

it affects mainly the state and the structure vec- 

tors. Let us state the following: 

Hypothesis 1. The failure mechanism described at 

the end of sec. 3.1 has a propagation delay which 

is much smaller than the time needed to recover a 

failed site. 

This hypothesis, which is valid with a good ap- 

proximation for many software systems (tenths of 

milliseconds against several seconds), allows us to 

consider the system as being "without repair". 

Therefore we can limit ourselves, at least in a first 

time, only to the evaluation of the failure probabil- 

ities f t~)(S ) and of the probability that, after some 

time, the system will reach a critical failure state. 

Let us suppose that a transaction 77, originated 

at some site, is to access data items stored at some 

other sites and that some of these data items are 

redundantly stored in multiple copies. For the 

sake of simplicity, we can define a static routing 

strategy for accessing the data items required by 

each transaction. If there is just one copy of the 

data item - needless to say - this will be chosen. 

For multiple copy data items we can associate 

each transaction with a priority table indicating, 

for each data item, which is the first choice copy to 

access, which the second choice (or first back-up), 

etc. What is a back-up copy for a transaction can 

be a primary for another one; so we must suppose 

there is some activity for each physical data item. 

How to choose priorities in order to obtain good 

strategies is not in the scope of this paper. 

Firstly, we must build the State and Structure 

Vectors, introduced in section 2.1. For this pur- 

pose, let us partition the sites of the system in the 

following way: 

N = { N t . . . . .  N u }, the set of system sites (host 

computers); 

N(')={N(~) . . . . .  N ~ ) } c N ,  the set of sites 

relevant to transaction 77; 

N~'fc  (i), the set of "back-up" sites for site 

N/~)~ N('); "back-up" sites meaning those sites 

which store redundant copies of the data items 

relevant to Ti. 
Then we can model the system by a set of trees 

(forest) as follows: (1) The root of each tree in the 

forest represents a site N/i )~ N(i); and (2) The 

leaves represent the r redundant copies n~(r of a 

data item d, r = 0 meaning the primary copy. 

Fig. 2 shows the trees for the example of section 

2.1. For instance, site N 1 contains data items xl, 

x 2, x 3. Only x 2 and x 3 are relevant to transaction 

T2. x 2 is stored in two other physical copies, 

besides the one in Nt, while x 3 is stored in just one 

more copy, and they all can serve as back-up 

copies. 

Such a forest represents a structural model of 

the transaction 77 as to its behavior with respect to 

failures. The number of leaves # L  is given by 

#N~)  D~ 

# L =  E E K i ,  (6) 
j = l  i=1 

where 

# N  ~i~ is the number of primary sites relevant to 

77; 

D i is the number of data items, relevant to Ti, 

stored at site Nf; 

Ki is the resiliency parameter, i.e. the number of 

replicas of data item i. 

We shall group the data items having the same 

value of K into the same resiliency class. To avoid 

unnecessary complexity, in the rest of the paper 

we shall keep K constant for all the data items in 

the database, so considering just one resiliency 

class. This assumption does not affect generality 

and can be easily removed, allowing a different 

resiliency parameter for each data item. 

Looking at the physical system, however, back- 

up copies for different data items can be stored at 

the same site. In a very first approximation, we 

E(na) E~ 
"~I I' I I I I I"I I 

Fig. 3. A service center, 
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can think that the availability of a data item is 

determined by the availability of the comput ing 

equipment  of the site at which it is stored. The 

rationale for such an assumption lies in the use of 

a hyerarchical modelling approach,  which brings 

from the availability values of each intervening 

component  (seek arm, disk controller, channel, 

CPU,  etc.) up to the availability values of the 

whole "access path"  to the data item [15]. There- 

fore we must add a set of  constraints of  the form: 

# 4  = n'j'~ = U " '  ~ U " ' .  (7) 
d ,  r ' ,  q 

These constraints are shown by the dotted lines in 

fig. 2, and by the external labels. 

The problem having been decomposed in this 

form, we can build the two vectors giving the static 

description of the problem. 

Let us come now to the failure mechanism. As 

we said in sect. 3.1, we suppose that failures are 

determined by a peak overload at one or more 

sites. The rates at which sites time-out owing to 

the overload add-up to their hardware failure rates. 

For  the purpose of this paper, we shall consider a 

site and its workload as a server and its queue. 

Let it be (fig. 3): E ( < ) =  mean service time; 

E(n~)  = mean arrival rate; and tq = response time. 

If the queue has exponentially distributed inter- 

arrival and service times ( M / M / 1  queue) the 

probabil i ty that the response time exceeds a given 

time t is [10]: 

Prob(tq < t ) =  E X P [ - ( 1  - p ) *  t / E ( < ) ] ,  (8) 

where o = E ( n a ) * E ( t ~ )  is the utilization factor 

for the server. The choice of  a M / M / 1  model is 

made just for ease of  exposition; in fact a M / G / 1  

model could fit as well, provided we could invert 

the Lap lace  t r a n s f o r m  a p p e a r i n g  in the 

Pollaczek Khintchine transform equation [7]. 

Therefore, given a time-out T and a service time 

E(t~), the probabil i ty that the time-out is exceeded 

depends exponentially on the utilization factor of 

the site. Fig. 4 shows the typical relationship be- 

tween the server utilization factor and the response 

time in a M / M / 1  model. It can be easily seen 

from it that the higher is the utilization factor P0 of 

the server, the higher is the probabili ty that even a 

small overload A 0 will cause the site to fail. 

We can evaluate the utilization factor P*, result- 

ing from a rerouting of  transactions to back-up 

data items, in the following way. 

Let us define the repartition coefficient a as the 

amount  of load each back-up copy has to cope 

tq 

site 
down 

site 
up t o 

~(t s) 

~tq 

I 

I 

I 

I 

~o ~ 
1 ? 

Fig. 4. The workload dependent time-out mechanism. 
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N 2 

! A ! 

N 4 

Fig. 5. An example system. 

with after the rerouting operation related to its 

normal production workload. If the system is 1-re- 

silient (i.e. there are two copies of each data item) 

and the load is balanced between the two copies 

during normal operation, then a = 2. If the system 

is n-resilient with balanced load and this load is 

equally subdivided among the n remaining copies 

in case of failure, then a = (n + 1)/n.  For more 

complicated conditions of loading and load subdi- 

vision, the a ' s  can be given as a table function. 

Let it be: 

n'Np the mean arrival rate of the requests to a 

given node Np for all the data items excluding 

those interested at the rerouting operation; 

n,j the mean arrival rate of the requests to the 

back-up data item j belonging to the Resiliency 

Class i; 

a i the repartition coefficients for the Resiliency 

Class i, then 

p~vp(s)=E(n~p+~Oti~"~nij)*E(ts). (9) 
i j - 

Therefore, given a system as in fig. 5, the proba- 

bility of having a utilization factor p* for node Np, 
is equivalent to that of being in a given system 

state S, and whether in such a state this node is 

faulty or not depends in turn on the value of 

p*(S) itself. Then the probability of a given node 

to become faulty owing to the described mecha- 

nism, Prob(FNe), is given by 

Prob(FN, ) = P rob(S)  * E X P [ -  (1 - p*(S)) 

• TIE(t , )] ,  (10) 

where Prob(S)  is the probability of being in state 

S and T is the value of the time-out. 

Let us suppose now that the probability of 

failure of node N1 does not depend on the system 

state (at least through the same mechanism we are 

/ 

, Xl x I 

Fig. 6. State Dependency Graph for the system in Fig. 5. 
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considering), so that we can evaluate it by means 

of (3). By means of (10) we can then evaluate the 

probabilities that nodes N2, N3, N4 be faulty and 

therefore the probability of each resulting state. 

The evaluation can be iterated as many times as 

necessary to exhaust all the possible dependencies. 

The dependencies themselves can be clearly put 

into evidence by means of the state dependency 

graph. This graph is so defined: 

1. there is one vertex for each physical node Ni. 

2. there is an oriented edge between any two nodes 

Ni --, Nj such as the failure of Ni affects the relia- 

bility behavior of Nj. Edges are labelled with the 

resources which require the load transfer. 

The State Dependency Graph for the example 

of fig. 5 is given in fig. 6. 

Then, if N2 enters a faulty state, we shall apply 

(10) again to find out if N4 fails in turn owing to 

the consecutive failure of N1 and N2. Failure 

propagation ends when a dependency path has 

been completely tested. In fig. 6 we can find paths 

( U l ,  N2, U4, N3}, {Ul ,  N3, U4, N2}, and {Ul ,  

N4, [N3, N2]}, where the bracketed sets are ordered 

sets from left to right, while sets included in square 

brackets represent parallel branches. 

Such a procedure exhausts all the dependencies 

for a given root node in the forest of fig. 2. 

However, the example of fig. 5 does not consider 

the fact that back-up nodes can be - in turn - the 

root nodes for other parts of the given transaction 

or, even worse, if the hypothesis of indepen- 

dence of the transactions does not hold - for parts 

of other transactions, so increasing the propaga- 

tion effects. This case is described by more com- 

plex cyclic graphs, as we shall see in section 3.4. 

3.3. Total Transition Probabilities 

Since each node Ni has a failure probability f~i~ 

due to hardware faults (see section 2.2), the proba- 

bility of transition from a state Sk, in which Ni is 

working, to a state Sj, in which it is faulty, is 

Prob(Sk ~ Sj)= F ( / ~ " ,  pu,(Sk),  T). (11) 

Since the hardware failure and the time-out failure 

mechanisms can be considered fairly independent, 

probability theory gives us the expression of the 

joint probability of one or the other of two events, 

as follows: 

f~"(Sk)  = Prob(Sk --* Sj) 

= f h  ~ ' '+ Prob(FN,) -Jhr~i), Prob(FNi) (12) 

As to the repair probabilities, they depend on the 

type of failure and, in general, on the state. How- 

ever as a first approximation, we can assume that, 

for a given kind of failure, the repair probability is 

weakly dependent on the state. 

Therefore, given a set of repair probabilities 

R t i )-  (r (i) }, o n e  for each kind of failure compo- 

nent i can undergo, we can evaluate the total 

repair probability as a linear function, weighting 

them with the probability Yk of occurrence of each 

kind of failure in the following way: 

R 

r~"= E y~r~'), (13) 
k = l  

where R is the cardinality of R °), and 
R 

~-~k=] "Yk = 1. 

The probabilities f~i)(S) and r °) so obtained 

are the values to be inserted as the a,j  entries in 

the A matrix of (3). 

Fig. 7a. An example system. 
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L14~L43 "~ 

Fig. 7b. State Dependency Graph for the system in Fig. 7a. 

3.4. A more complex example 

While in the example of fig. 6 there was some 

kind of hierarchy, since node N1 was considered 

to fail first and the files stored on it were consid- 

ered to be as primary copies, we can consider a 

more complex example in which no node is 

"privileged". Let us look at the system of fig. 7a 

and let it be described by the State Dependency 

Graph of fig. 7b. Obviously to pass from one 

representation to the other we must know all the 

data items requested by the transactions in the 

system and their repartition coefficients. However, 

as far as our computation is concerned, only the 

loads switched between any two nodes are interest- 

ing; we call L u the load switched from node Ni to 

node Nj upon the failure of the former. 

Fig. 7c shows the four different successions of 

state dependency graphs which represent the sys- 

tem when, leaving from the situation of fig. 7b, 

successive failures (one at a time) require load 

switching among the nodes and the degenerative 

phenomenon described in sect. 3.1 takes place. 

Notice that L;; in state Sh generally differs from 

~L¢2 

L ~ L 2 3  

/ \ .... 

/i /i 
~4 ~43 

~ 2 

L~Z Lt4 Z3Z LZl LZ=~ 

/____\ /---\ 

/ 
/ 

Fig. 7c. The succession of the State Dependency Graphs for the different degeneration paths. 
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L,; in state Sk owing to the different failure paths 

followed by the system. 

Since the transition matrix in Eq. (3) requires 

the knowledge of the transition probabilities of 

each component in each state, we must evaluate 

relation (12) for all the working nodes in each 

state. It is easy to see that the total number of 

times (12) is to be computed is: 

N 

~_~ N ! / ( N - -  i)! (14) 

i 1 

The exponential complexity in N of (14) is 

obviously a limit to the size of the system we can 

consider. However we saw by (5) that the applica- 

tion of a divide and conquer philosophy is often 

possible, so that N never reaches values which 

make the evaluation computationally unpractical. 

An actual failure path leaves from the situation 

of fig. 7b and it proceeds down the tree, choosing 

one branch at a time, from one level to the other 

until either it stabilizes itself at one of the system 

states shown in fig. 7c, or it comes to the complete 

black-out of the system (state 4~). 

An analytic simulation program is being written 

on a VAX/780 under Berkeley UNIX which 

accepts as input the system parameters such as the 

transition rates, service times, requests arrival rates, 

time-outs values of each node, and the transaction 

parameters such as the state dependency graph, 

and the repartition coefficients, and will give as 

output the system availability value. 

This program will be used as an interactive 

design tool, to determine systems parameters such 

as the best allocation for back-up copies, the 

optimal time-out values, the optimal repartition 

coefficients. 

4. Conclusions 

The problem has been considered of obtaining 

quantitative evaluation of availability in Distrib- 

uted DB systems. The analysis can be useful in an 

interactive process to study the effect of different 

design solutions involving the number and the 

allocation of duplicate data, the values of the 

transition rates for the components of the system, 

and the values for time-outs. It has been shown 

how state-dependent failures can lead to 

catastrophic effects if not carefully controlled. The 

transition probabilities have been obtained for a 

particular case. 

Future work includes a generalization of the 

methodology presented in this paper and exten- 

sion to other kinds of state-dependent failures, 

even if the feeling of the author is that there are 

few possibilities to arrive to a very general model 

which encompasses every kind of state-dependent 

failure. 
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