
Proceedings of the

Sixth Annual IEEE
International Conference on

Pervasive Computing and Communications

17-21 March 2008, Hong Kong

Los Alamitos, California

Washington • Tokyo

PERLA: a Data Language for Pervasive Systems

F.A. Schreiber, R. Camplani, M. Fortunato, M. Marelli, F. Pacifici

Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano, Italy

{schreibe, camplani}@elet.polimi.it, filippo.pacifici@polimi.it

Abstract—A language is presented for managing data in
highly pervasive systems made of very different devices as to
their technology and functional capabilities. Functional and non-
functional requirements are dealt with in a transparent mode by a
SQL like interface. In this paper the most relevant features of the
language, the related data structures and some query examples
are briefly introduced.

I. INTRODUCTION

In a very short time, the interest for Wireless Sensors

Networks and their applications has grown both within the

academic community and, even if with some warnings [1], in

the world of actual users. At the same time, the complexity

of the envisaged WSN-based systems grew from a handful

of homogeneous sensors to hundreds or thousands of devices

differing as to their capabilities, architectures, and languages.

The result of this inflationary expansion is the difficulty

an application programmer encounters in dealing with the

languages and protocols, which characterize different portions

of the system, and in optimizing sampling, storage, and

transmission strategies in order to save as much as possible of

power in the batteries, which are the most wearable compo-

nents in a system of mostly unattended small devices.

As a motivating example of such systems, we refer to one of

the case studies in the ART DECO project [2], a large project

funded by the Italian University Ministry: the automation of

a large wine production farm from the vineyard to the table.

Table I schematically shows information items and devices

used for supporting the different phases of the production and

delivery processes.

TABLE I
DEVICES USAGE AND TYPES

WHERE WHAT HOW

vineyard humidity, temperature, chemicals sensors

cellar humidity, temperature sensors

bottle tracking information RFID tag

pallet tracking information, temperature RFID tag, sensors

truck position information GPS

workers information system PDA

A number of efforts have been made to define and im-

plement a High Level Language for managing data in WSN

applications, some of the most noticeable among them are

TinyDB, GSN, and DSN.

TinyDB [3] [4] is one of the first efforts in querying WSN

data with a SQL like interface; multiple persistent queries with

different sampling time are issued from a pc, data are collected

from Motes sensors in the environment, filtered, possibly

aggregated, and routed out to a base station. It is defined over

TinyOS and it exploits power-efficient in-network processing

algorithms. Its portability is bound to that of TinyOS.

GSN [5] [6] is a scalable, lightweight system which can

be easily adapted, even at run-time, to new types of sensors,

thus allowing a dynamic reconfiguration of the system. XML

is used as the network and data specification language, while

SQL is used as the data manipulation language.

DSN [7] [8] uses a completely different approach. The

whole system is built in the declarative language Snlog - a

dialect of Datalog - both for data acquisition and for network

and transmission management.

The large heterogeneity of the pervasive systems we are

dealing with, comprising devices ranging from passive RFID

tags to application servers, requires a very high level of

transparency so that as much as possible of the technical

problems be handled by the system, while the application

programmer only writes high level code. This observation led

us to the approach “single system - single language”, but,

unlike in DSN, we stay as near as possible to SQL, since it

is still the most widely known and used data language.

At the outset, we only thought to implement a multi-

platform version of TinyDB, which could be deployed on

different sensor families with little effort; however, during the

analysis phase, we extended our goal in three successive steps:

• run time support of heterogeneity;

• support of non intelligent device classes, such as RFID

tags;

• extend the target to generic pervasive systems.

While the impact of the first step is limited to the mid-

dleware, which must provide a set of APIs to manage the

different platforms in a uniform way, the other two steps

require a rethinking of the functional features of the language.

Tags are not equipped with sensors and cannot perform data

manipulation or transmission, but their interaction with the

external world is mediated by the RFID reader while the

exchanged information is the tag presence itself, and not some

sensed value. Therefore, we must provide an abstraction for

the RFID behavior and this can be done in two ways: the first

considers an RFID tag as it were a sensor whose “sampled

data” is the identifier of the last reader which sensed the tag.

The second one considers the RFID reader as it were a sensor

whose “sampled data” is the identifier of the last tag sensed

by the reader. Since communications with the network are

always handled by the reader, the first solution provides a

Sixth Annual IEEE International Conference on Pervasive Computing and Communications

0-7695-3113-X/08 $25.00 © 2008 IEEE
DOI 10.1109/PERCOM.2008.30

282

higher level of abstraction and requires a more sophisticated

middleware. Moreover, the presence of RFIDs claims for the

introduction of an event based semantics at the language level,

since we cannot rely on a fixed sampling interval, but actually

“sampling” is performed by the reader at the moment of the

tag passage.

The third step has been made possible thanks to the avail-

ability of a logical and distribution independent software plat-

form for large heterogeneous networks, described in section 2,

provided by another workgroup of the ART DECO project [9].

This allowed our work to focus on the high level declarative

language definition, being freed from low level programming

issues, and processing the queries in terms of logical objects

abstraction.

The language has been defined in order to manage both

functional features, comprising the definition of operations

which manipulate raw data to generate the query output

and statements for the setting of sampling parameters, and

non-functional features, which account for constraints on the

offered functionalities and on the Quality of Service (QoS);

in WSNs the QoS is mainly related to power management,

however node latency and sensors availability are considered

as well. Non-functional features are dealt with through a

“policies” mechanism, which will be explained in section 3.

The heterogeneity of the considered devices classes led us

to identify two levels of abstraction represented by two levels

in the language:

• a Low Level Language whose goal is to manage the

sampling operations performing only data manipulations

on a single sensor;

• a High Level Languagewhose role is that of manipulating

sampled data in order to produce queries results.

Both languages have a SQL-like syntax; however, the se-

mantics of the Low Level Language differs, since it can be

thought as a mechanism to generate the data streams as in

figure 1, and to determine when sampling should be performed

on which nodes.

Fig. 1. Comparison between PERLA and TinyDB.

The rest of the paper is organized as follows: section 2

presents the architecture of the system and its middleware

Fig. 2. Middleware architecture.

components; section 3 introduces the PERLA language func-

tional and non-functional features; in section 4 the query

processing mechanism is explained together with examples -

drawn from the above mentioned case study - which show the

specificities of our approach; finally, section 5 presents the

current state of the project and the work still to be done.

II. SYSTEM ARCHITECTURE AND MIDDLEWARE

In this section the architecture for pervasive systems, over

which we based our language, is briefly explained. The ab-

straction levels provided by the architecture and the interface

supporting the two levels of the language are presented.

Figure 2 shows the system architecture:

• Application Layer: is the front-end used by applications

in order to access data coming from the physical devices;

• Logical Objects Layer: provides an abstraction for phys-

ical devices;

• Device Access Layer: provides the underlying infrastruc-

ture for accessing devices, abstracting from the required

software distribution.

In the application layer, the query analyzer handles user-

submitted queries and, using a dedicated component (i.e.,

the registry), it retrieves information about logical objects

composing the system. Thus, the query analyzer selects logical

objects relying on this information to execute the query.

In the logical layer, each component (i.e., logical object)

wraps single or homogeneous groups of devices. In the first

case, a logical object hides the complexity for accessing

devices (in this way, a change in lower layers is transparent to

the higher ones). In the second case, besides hiding the phys-

ical devices composing the aggregate, the operation manager

directly provides aggregated results to the logical object.

Logical objects expose a standard interface that unifies

and simplifies the access to higher layers. In particular, they

provide three categories of attributes:

• Static attributes represent constant values describing a

characteristic of the node (i.e., node type, maximum

sampling rate, etc.);

283

• Dynamic probing attributes are the variables that a logical

object must read from physical devices (i.e., a sensor

measurement);

• Dynamic non probing attributes are those for which a

logical object can return a local cached value without

actually dealing with the physical device (i.e., current

base station).

Note that different logical objects can expose different sets

of attributes and that the same attribute can be dynamic for

some devices and static for other ones (e.g. location). Logical

objects interface can also provide events used to signal changes

in the physical devices. Non probing attributes often have an

associated event that notifies a change of their values (e.g. last

sensed RFID reader changed).

The implementation of logical objects will be deployed as

much as possible on the lowest layers of the architecture: if a

device is too tiny and has very poor computational resources,

the logical object wrapping it will be deployed at a higher

layer.

The device access layer provides the access point to devices

allowing to abstract the software infrastructure required by

a specific device technology. For instance, in RFID-based

systems, the operation manager is the middleware used to drive

the reader.

III. THE LANGUAGE FEATURES

We classified the features that should be exploited by the

language in four categories:

• Data representation. The language should be able to hide

physical devices as much as possible and to provide a

database view of the whole pervasive system: statements

written by users are queries on this database. Differently

from traditional databases, every query must also specify

how, when and where the sampling operations should be

executed.

• Physical devices management. The main issues in pro-

viding physical devices abstraction are the definition of

the sampling semantics for each class of devices and the

introduction of a temporal semantics taking into account

the existence of losses and delays in physical communi-

cations. With reference to the architecture presented in

section 2, each device is abstracted by a logical object

and each sampling operation on the device is abstracted

by the reading of a logical object attribute. Two types of

sampling are supported: periodic or event based; the latter

is activated when a logical object event is fired (typically

used in RFID devices).

• Functional characteristics. Language statements should

allow the user to specify sampling parameters (time,

mode, etc.) and the set of operations to manipulate raw

data in order to generate a query output.

• Non functional characteristics. In WSNs the most im-

portant non functional parameters are related to power

management. However, due to the node heterogeneity we

are considering, a generic approach must be introduced:

a small number of clauses should be provided by the lan-

guage to support all the non functional characteristics that

can be considered now or discovered in the future. From

the user point of view there are no differences between

logical objects attributes that retrieve data of interest

and logical object attributes that return non functional

parameters. However, an important difference exists from

the system point of view: non functional fields exposed

by logical objects are expressed in an abstract way. Then,

they are internally translated into concrete values that can

be handled by physical devices. For instance, a percentage

power level attribute can be obtained from the voltage

value for a certain class of devices, predicted from the

number of executed operations for other devices, or just

set to 100% for AC powered devices. Non functional at-

tributes can be used to decide if a node should participate

to a query, to set the current sampling rate, to retrieve

information about network nodes, etc.

We now briefly outline the functionalities that should be

supported by logical object interfaces of physical devices

involved in query execution, so that the language semantics

can be then explained in terms of the interaction between

the query analyzer and the logical objects. The interface must

provide three kinds of functionalities:

• Retrieving attributes values: attributes can be both data

of interest and policy values. A special ID attribute must

be supported by all the logical objects to allow the query

analyzer to univocally identify them.

• Firing notification events: events can be used to perform

event based sampling or to activate query selections.

• Getting the list of supported attributes: a set of methods

should be provided to allow the query analyzer to know

the set of attributes (and their data types) a logical object

exposes.

In the following the main language issues are outlined.

A. Data structures

The data structures which support our language are the

stream tables (or streams) and the snapshot tables (or snap-

shots). Streams are unbounded lists of records produced by

queries. Each record has a set of user defined fields and a

native timestamp field. It supports the insertion and the reading

operations. In insertion, new records can be inserted into the

stream by a running sub-query. The execution of this operation

generates an insertion event that can be detected and used by

other sub-queries. In reading, a data window can be extracted

from the stream by a running query. This window is defined

by a timestamp value and by a size (i.e., number of records).

The snapshot table is a set of records produced by a query

in a given period. During this period, all the records generated

are stored in a buffer. At the end of the period the snapshot

table is filled with records from the buffer. When the snapshot

is read, the current content is returned.

284

B. High and Low Level Queries

As pointed before, we defined two SQL like languages: the

Low and High Level Language. A user submitted query is

composed of some Low Level and some High Level Queries,

each of them having the role of retrieving and manipulating

data and inserting the produced results in a data structure.

A query written with the Low Level Language is used to

define the behavior of a single device (or a group of devices

abstracted by a single logical object). The main role of

Low Level statements is allowing a precise definition of the

sampling operations, but also allowing the application of some

SQL operators to sampled data. An object that is executing a

Low Level Query should maintain a local buffer and perform

the following activities:

• to sample data by reading some logical object attributes

and inserting the read values into the local buffer.

• to perform SQL operations (selection, aggregation, fil-

tering, grouping, etc.) on the current content of the local

buffer and insert the obtained records into the output data

structure.

The query can request the execution of both the previous

activities, periodically or when an event happens. The local

buffer is conceptually unbounded and its size increases in-

definitely. Practically, the executor should be able to do a

garbage collection of records which are no longer required

by SQL operations. It is worth to note that all the processing

executed at low level is relative to data extracted from a

single logical object and has the goals of discarding bad values

and optionally aggregating a group of sampled values before

sending them to High Level Queries. If a node cannot process

data or maintain a buffer (e.g. an RFID tag) the query will be

executed on another physical device (e.g. the RFID reader),

but this distribution is hidden to the language. A Low Level

statement can contain also an Execute If clause allowing

the definition of the set of logical objects that will execute the

query, in terms of conditions on logical object attributes. High

Level Queries take one or more streams (generated by Low

Level Queries or other High Level Queries) as input, perform

SQL operations on windows extracted from input streams and

insert the generated records in an output data structure. The

activation of a High Level Query can be specified either in

terms of a time period or in terms of an event (insertion of

a record into a stream). Note that the High Level Language

has similar functions as the TinyDB language, because both

are used to manipulate data streams coming from sensors.

The Low Level Language has not a counterpart in TinyDB

and can be thought as a mechanism to generate data streams

corresponding to the TinyDB sensors table (see figure 1).

C. Pilot join operation

Analyzing some case studies, we realized that in many real

situations a sampling on a node should be started if and only

if a certain value has been retrieved from a sampling done

on another node. For example, suppose that a user requires a

temperature monitoring of all the wine pallets placed in the

trucks that are currently in a given parking area. If temperature

sensors are mounted on the pallets, the sampling operation on

a node should be activated only when its truck is in the parking

area. Truck locations are detected by position sensors, that are

nodes physically different from the temperature nodes and not

directly connected to them.

The above consideration suggested us that a specific op-

eration should be supported to allow sampling activation

depending on data sampled from other nodes. We called this

new operation Pilot Join, because it is conceptually similar to

the SQL join operation, but it is used to activate the execution

of a Low Level Query on logical objects.

Two kind of Pilot Join are possible:

• Event based Pilot Join. When an event happens (i.e. a

record is inserted into a stream) a given set of nodes

should start sampling (typically for a fixed period). Sup-

pose that, in the previous example, the temperature must

be sensed once every time a truck enters the parking area;

in this case an event based pilot join is required.

• Condition based Pilot Join. A continuous sampling (with

frequency f) should be done on all the nodes that are

connected to a base station that is in a list of base

stations satisfying given criteria. This list is periodically

updated with a frequency lower than f : this behavior is

obtained using a snapshot data structure. Consider again

the previous example. Suppose that a running query is

sensing (with low frequency) the position of all the trucks

and inserting them into a stream. Suppose also that the

required behavior of the system is the continuous sam-

pling of temperature sensors mounted on pallets whose

last monitored position is in the parking area. In this case

a condition based pilot join must be used.

IV. QUERY PROCESSING AND EXAMPLES

A user-defined query can be expressed as a graph: nodes

are either data structures or queries, while edges represent

information flows and pilot join operations.

A real example of a query graph is reported in figure

3: it requires a temperature sampling only on the pallets

placed in the nearest truck to a given point. The query LLQ1

represents the query that periodically (with period T) samples

trucks positions through GPS. HLQ1 is activated every T

instants to find the truck nearest to the point P. The ID of

the base station mounted on that truck is then inserted in

the snapshot NearestTruck. The query LLQ2 fills the output

stream Temperatures and is activated on all the logical objects

abstracting temperature sensors and currently connected to the

base station with the ID contained in NearestTruck.

Figure 4 shows the execution of a query in the system,

providing an example of the process of query decomposition

and distribution. When a query is sent to the system (Q1),

the query analyzer parses it and extracts the definition of the

nodes composing the query graph. Needed data structures are

instantiated and the execution of High Level Queries is started

(Q2). Then, the set of logical objects that will take part in each

Low Level Query is identified using a registry. Finally, the

285

Fig. 3. Query graph example.

Fig. 4. Query decomposition and distribution process.

system starts sending logical objects the commands needed to

execute Low Level Queries (Q3, Q4), that are expressed at a

higher abstraction level with respect to the set of commands

directly intelligible by physical devices. Abstract requests (Q3,

Q4) are translated by logical objects into concrete ones (Q5,

Q6, Q7) in order to allow physical devices to execute them.

The set of rules used to perform this operation are represented

in the figure by the policy container. It is to be noticed that

the same abstract command can be translated into different

concrete commands if it should be executed on different

devices, recognizing different concrete policies constraints. For

example, in the figure, Q3 has been translated to Q5 for a class

of devices and to Q6 for another class of devices. When all

the query components are started, produced data flows go from

logical objects to the output data structure, following the path

shown in figure 3. If required by the user (with a specific

language clause) the set of logical objects participating to the

query is updated periodically or when some events happen.

To better define a temporal semantics for the Pilot Join

operation, a native timestamp concept was introduced: it is

a timestamp field attached to each record produced in the

system. Low Level Queries are the first elements of the

query graph that generate native timestamp values. As said

before, when they are activated, these queries compute some

SQL operations on data contained in their local buffer and

insert the obtained records in an output data structure. They

set the native timestamp field of these records equal to the

current timestamp, (i.e. the timestamp at which the query was

activated). A synchronization algorithm is used to share the

current timestamp among all the system nodes.

Each record generated by High Level Queries is times-

tamped with the native timestamp of the record that caused

the event, if the query is event based, or with the activation

timestamp, if the query is activated periodically.

In the following some examples - drawn from the ART

DECO case study related to wine production and transport

processes - are provided to show the peculiarities of our

language with respect to TinyDB and GSN. Suppose that the

vineyard is equipped with a set of wireless nodes, having on

board a temperature and a humidity sensor. The first query we

consider has the role of monitoring environment parameters

of the area in which wine is cultivated. More specifically we

want to sample temperature and humidity every 30 minutes,

returning these values, together with the location of the sensor,

only if the sensed temperature is in a critical range. In order

to provide more accuracy in the results, each node is required

to sample its sensors every ten minutes and to consider the

average of the three last values. In this situation, the user

submitted query is only composed of a Low Level statement:

CREATE OUTPUT STREAM EnvironmentParameters

(sensorID ID, temp FLOAT, humidity FLOAT, locationX FLOAT, locationY FLOAT)

AS LOW:

EVERY 30 m

SELECT ID, AVG (temp, 30 m), AVG (humidity, 30 m), locationX, locationY

SAMPLING

EVERY 10 m

EXECUTE IF EXISTS (temp) AND is in Vineyard(locationX, locationY)

REFRESH EVERY 5 m

Unlike TinyDB, our language can run a unique query si-

multaneously on different kinds of physical devices, thus sup-

porting runtime heterogeneity. In fact, note that the Execute

If clause requires that the query be executed on all the nodes

currently placed in the yard and having on board a temperature

sensor and it does not restrict the query execution to wireless

nodes only. Therefore suppose that a worker is in the yard with

a PDA which can sense the current temperature: this PDA will

execute the query exactly as the wireless nodes (if the PDA has

not a humidity sensor on board, null values will be produced).

In this example, it should be noticed that the location attribute

is static for wireless nodes (and it is configured during the

network deployment phase), while it is dynamic for PDAs: if

a worker enters the yard his PDA will start executing the query

as soon as the Execute If clause will be reevaluated, possibly

recovering data which should be provided by a “dead” sensor.

Another important peculiarity of our language is the ability

of querying the network state as “normal” data. Suppose that,

in the previous example, we want to monitor the power state

of the wireless nodes in order to detect low powered devices.

The following query can be written:

286

CREATE OUTPUT STREAM LowPoweredDevices (sensorID ID)

AS LOW:

EVERY ONE

SELECT ID

SAMPLING EVERY 24 h

WHERE powerLevel = low

EXECUTE IF deviceType = “WirelessNode”

The previous queries don’t make use of the High Level

Language which, for instance, is often used when spatial

aggregations have to be performed on sampled data. As an

example, consider a query that returns the number of low

powered wireless nodes: a High Level Query performing the

count aggregation can be written on the stream generated by

the previous Low Level Query:

CREATE OUTPUT STREAM NumberOfLowPoweredDevices (counter INTEGER)

AS HIGH:

EVERY 24 h

SELECT COUNT(*)

FROM LowPoweredDevices(24 h)

While the GSN concept of wrapper is quite similar to our

Low Level Queries and that of virtual sensor is quite similar

to our High Level Queries, the next example shows the pilot

join operation that is the feature really improving our language

potential with respect to GSN.

We consider the monitoring of wine during the transport.

In particular, suppose that every truck is equipped with a

GPS and a base station. Suppose also that each pallet has

a temperature sensor used to sense the temperature of the

contained bottles. The query requires to produce as output the

list of pallets whose temperature exceeded a certain threshold

while the truck was traveling through a given zone, which is

considered particularly critical:

CREATE SNAPSHOT TrucksPositions (linkedBaseStationID ID)

WITH DURATION 1 h

AS LOW:

SELECT linkedBaseStationID

SAMPLING

EVERY 1 h

WHERE is in CriticalZone(locationX, locationY)

EXECUTE IF deviceType = “GPS”

CREATE OUTPUT STREAM OutOfTemperatureRangePallets (palletID ID)

AS LOW:

EVERY 10 m

SELECT ID

SAMPLING EVERY 10 m

WHERE temp > [threshold]

PILOT JOIN TrucksPositions

ON baseStationID = TrucksPositions.linkedBaseStationID

In this query the pilot join operation is used to activate

the temperature sampling only on the pallets contained in the

trucks that are driving into the critical zone. Table II shows the

attributes of the logical objects involved in the execution of the

query: GPS mounted on trucks and sensors attached to pallets.

Note that the interface of logical objects wrapping GPS devices

has an attribute “baseStationId” that retrieves the id of the base

station mounted on the same truck (this is a static attribute,

whose value is defined during the network deployment time).

V. STATE OF THE PROJECT AND FUTURE WORK

The state of the project is the following: we defined the com-

plete non ambiguous EBNF grammar of both Low and High

Level Languages, trying to obtain the maximum readability,

TABLE II
LOGICAL OBJECTS USED IN THE TRANSPORT MONITORING QUERY

GPS - Logical object wrapping a GPS device

Field Name Data Type Field Type Description

ID ID ID Logical object identifier

linked
ID Static

ID of the base station

BaseStationID mounted over the truck

locationX FLOAT Dyn. prob. Sensor location X coordinate

locationY FLOAT Dyn. prob. Sensor location Y coordinate

deviceType STRING Static Type of device

WSN node - Logical object wrapping a single WSN node

Field Name Data Type Field Type Description

ID ID ID Logical object identifier

baseStationID ID
Dyn. ID of the base station the WSN

non prob. node is currently connected to

temp FLOAT Dyn. prob. Sampled temperature

and we defined the semantics of all language clauses [10]. We

are currently implementing the parser and the query analyzer.

We plan to initially test the software on dummy logical objects

before introducing real physical devices.

From the language definition point of view, some extensions

are possible. For instance, an improvement can be the support

of actuators, abstracting them in a similar way as sensors.

We also evaluated the possibility of introducing clauses for

performing in-network data-mining operations, but the first

specification of the language does not support them yet.

ACKNOWLEDGEMENTS

This work is partially supported by the ART DECO FIRB

project of the Italian MUR

REFERENCES

[1] A. S. Tanenbaum, C. Gamage, and B. Crispo, “Taking Sensor Networks
from the Lab to the Jungle,” IEEE Computer, vol. 39, no. 8, pp. 98–100,
2006.

[2] “http://artdeco.elet.polimi.it/.”
[3] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM
Trans. Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

[4] ——, “TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks,”
Proceedings of the ACM Symposium on Operating System Design and
Implementation (OSDI), 2002.

[5] K. Aberer, M. Hauswirth, and A. Salehi, “A middleware for fast
and flexible sensor network deployment,” Proceedings of the 32nd
international conference on Very large data bases, pp. 1199–1202, 2006.

[6] ——, “The Global Sensor Networks middleware for efficient and flexible
deployment and interconnection of sensor networks,” TR LSIR-REPORT-
2006-006, pp. 1–21, 2006.

[7] D. Chu, A. Tavakoli, L. Popa, and J. Hellerstein, “Entirely declarative
sensor network systems,” Proc. VLDB’06, pp. 1203–1206, 2006.

[8] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis, S. Shenker,
and I. Stoica, “The design and implementation of a declarative sensor
network systems,” T.R. UCB/EECS-2006-132, pp. 1–14, 2006.

[9] L. Baresi, D. Braga, M. Comuzzi, F. Pacifici, and P. Plebani, “A service-
based infrastructure for advanced logistics,” in IW-SOSWE ’07: 2nd
international workshop on Service oriented software engineering. New
York, NY, USA: ACM Press, 2007, pp. 47–53.

[10] M. Fortunato and M. Marelli, “Design of a declarative language for
pervasive systems,” Master’s thesis, Politecnico di Milano, 2007.

287

