
A Context-Aware Methodology for
Very Small Data Base Design

C. Bolchini, F. A. Schreiber and L. Tanca
Politecnico di Milano, Dipartimento di Elettronica e Informazione

Email: bolchini,schreiber,tanca @elet.polimi.it

Abstract— The design of a Data Base to be resident on portable
devices and embedded processors for professional systems re-
quires considering both the device memory peculiarities and the
mobility aspects, which are an essential feature of the embedded
applications. Moreover, these devices are often part of a larger
Information System, comprising fixed and mobile resources. We
propose a complete methodology for designing Very Small Data
Bases, from the identification of the device resident portions down
to the choice of the physical data structure, optimizing the cost
and power consumption of the Flash memory, which – in the
greatest generality – constitutes the permanent storage of the
device.

I. I NTRODUCTION AND MOTIVATION

The use of handheld devices, such as Smart Cards, Portable
Data Assistants (PDA), Palm PCs and Cell Phones, as intelli-
gent portable terminals of some Information Systems is being
widely discussed in recent times [1], [2], [3], [4], [5]. Features
required by portable devices in order to manage both local
and remote data range from very simple file system functions
to a full set of database management capabilities, including
some ACID transactions properties. Examples of databases for
very small devices – henceforth calledVery Small Data Bases
(VSDB) – arepersonal (micro)information systemssuch as
the so-calledcitizen’s cardor the personal medical card, the
personal financial database, storing the device owner’s stock
portfolio, and thepersonal travel database, recording all the
travel information considered interesting by the device owner.

A typical architecture for a modern Information System
including portable and small devices is a variation of the
distributed client-server paradigm. Here, the server power can
range from a small workstation to a very large mainframe, and
there is no need for the server to be unique; indeed, in the
most general case the microdevice will be served, in turn, by
one of a number of hosts, possibly having different hardware
characteristics and being located at sites very far apart from
each other.

The (portable) client can range from a Smart Card to a
powerful PC, thus influencing the amount and structure of the
data that will be stored locally; traditional applications must be
scaled down in order to cope with the limited resources of such
devices in terms of processing power and energy autonomy, so
that these issues must be considered at an early stage during
database design [6]. Mobility (thus time and space) is a very
critical issue in this perspective, since the designer has to limit
the data immediately available on the device to those strictly

This reasearch is partially supported by the FIRB project MAIS

related to the specific context the user is experiencing at a
certain specific time.

Our project proposes a complete design methodology for
VSDBs, based on a modification of the classical three levels
of the ANSI-SPARC model w.r.t. two main points: a) at
the very early steps of conceptual database design, where
application features are taken into account, we analyze and
introduce context related information: by examining applica-
tion and context together we determine the VSDBambient,
which is the set of personal and environmental characteristics
determining the portion of data that must be stored locally
on the device; b) due to the reduced capacity, limited power
and specific operation modes of the storage medium (most
often EEPROM Flash memory), physical storage information
is taken into account during the logical design process. This
phase of logical design, where tables are analyzed w.r.t. the
envisaged access types, information volatility, user permissions
and protection mechanisms is called thelogistic phase, since
it mainly deals with logistic aspects of data storage.

In the latest decades, all the burden of the design of physical
data structures, along with the main issues related to optimal
data allocation and access, have been in charge of the DBMS
designers; in our project we propose that the logistic phase be
taken care of as a joint effort of the database designer together
with the DBMS designer. This is accomplished by allowing the
database designer to specify to a quite relevant extent his/her
desiderata w.r.t. the data structures to be employed for the
physical storage of database relations1.

The rest of the paper is organized as follows. Section II
provides an overview of the entire methodology. Section III
details the steps of the design methodology leading to the
definitions of the data to be stored on the portable device,
based on the significant context elements. Section IV proposes
the logical and physical data structures allowing a satisfactory
performance/cost trade-off in accessing stored data; the last
section conlcudes the paper with an evaluation of the proposed
data structures w.r.t. performance and power consumption.

II. T HE COMPLETE METHODOLOGY FORVSDB DESIGN

Fig. 1 briefly describes the entire framework for designing
very small databases for embedded processors and portable
devices.

The methodology includes a left-hand track, which takes
care of the context-aware conceptual and initial logical design,

1Throughout the paper we will refer to the relational model of data; variants
for different data models are immediate.

SIGMOD Record, Vol. 33, No. 1, March 2004 71

Fig. 1. The complete framework of the Very Small Database design methodology

and of a right-hand part dealing with the logistic/physical
phase. The left part is in charge of the database designer,
possibly supported by a case tool; here, the relevant infor-
mation is chosen and modelled by the usual techniques for
conceptual database design, but brand-new methodological
issues are raised by the need of sorting out the local, “first
need” information – stored on the mobile device and defining
the VSDB ambient – from the other fragments to be stored in
other sites of the Information System and queried only when
a connection is available.

The center and right parts concern the DBMS data struc-
tures and access methods, along with issues related to se-
curity/privacy. Here, physical data structures are chosen by
the database designer in collaboration with the DBMS, and
with the support of a workload simulator that accepts the
designer’s estimation on data accesses and provides suggestion
on the most appropriate data structures. We are currently
developing such a full featured, modular DBMS for portable
devices, including the physical data structures defined in this
project, along with the case tool that directs the designer’s
choices in order to achieve the best performance in terms of:
a) access time, b) amount of required storage, and c) power
consumption. For a detailed description of this part refer to
[6] and [7].

III. T HE CONTEXT-AWARE CONCEPTUAL AND LOGICAL

PHASES

The conceptual phase can be decomposed into the following
steps:

1. Application information modelling: this is done by
the usual techniques for conceptual database design, taking
into accountall the information relevant to the application at
hand, regardless of the target storage media. Indeed, the VSDB
design must be merged within the design of the distributed
database it belongs to.

2. choice of theanalysis dimensions: analysis dimensions
provide the different perspectives the mobile device is viewed
from, and are used to set out the VSDBambient. Here we
consider some intuitive dimensions, which can be integrated
with extra ones, or dismissed where not appropriate:

• Theholderdimension refers to the type of users carrying
the microdevice, whose views over the whole information
system can be quite different. For example, in a medical
application,doctors will hold information about all
their patients, whilepatients will only hold informa-
tion related to themselves, maybe at a finer level of detail.

• The interest topic dimension refers to the particular
aspect/subject the user might be interested in at a cer-
tain moment. In the medical care case, topics might
includeprescriptions or chronic diseases . In
a tourist guide application this dimension might refer to
the choice of information about the city entertainment, or

72 SIGMOD Record, Vol. 33, No. 1, March 2004

about restaurants, etc.
• The situationdimension refers to the fact that during the

device life the user may wish to access different views
of the data, being able to perform different operations.
For instance, in the personal medical information system,
examples of situations are theregular , i.e. ordinary
patient’s state, as opposed to a temporaryhospital ized
situation.

As an output of this step, the identified dimensions are
collected to form theambient array model, which drives the
actual choice of the information to be kept on the microdevice;
the dimensions used in this paper form a three-positions array
model:

<holder, interest topic, situation >

3. dimensions conceptual design:In this phase, one con-
ceptual schema is built for each dimension value; e.g., w.r.t.
the holder dimension, in the medical care application we
build one view for thepatient , one for thedoctor and
one for each of the possible other values of this dimension
(e.g. hospital administrator). Here a reconciliation work must
be done; the conceptual schemata produced by analyzing the
application from the viewpoints of the various dimension
values must be reconciled with the Global Conceptual Schema,
in order for the former to be perceived as views over the latter.

4. conceptual view merge: here the so calledarray
schemata, or chunks, are derived from the array model, by
instantiating the dimensions; examples of chunks in the Med-
ical Care Database (MCDB) case are:
<patient, chronic diseases, hospital >
This chunk contains all the information needed by a patient
at the hospital w.r.t. his/her chronic diseases (if any).
<patient, prescriptions, regular >
This chunk contains all the information needed by a patient
in a normal situation, w.r.t. his/her prescriptions (if any).
<doctor, prescriptions, regular >
This chunk contains all the information needed by a doctor
regarding all his/her regular patients’ prescriptions.

Chunk derivation must be done with an eye to their actual
significance: indeed, only some of the possible combinations
of dimension values make sense. For example, the chunk
<doctor, accounting, hospital >
makes little sense in view of the applications semantics.

As a conclusion of this phase we assemble chunks in order
to define which is the information that must be stored on one
single device. For example, normally a patient’s smart card
will contain all the chunks related to the patient’s (regular)
situation plus those related to his/her chronic diseases (such
as allergies etc.) and prescriptions. When the patient is at
the hospital, the “regular” chunks will be removed to leave
room for the “hospital” ones. However, if the device is more
capacious (for example a PDA) the designer might decide to
leave on all the chunks related to different situations at all
times.

5. logical view design:here different activities are carried
out:
• logical design of the global database: examples of tables

for the MCDB are:

PATIENT(SSN, FName, LName, Sex, BirthD,

DeathD, Address, City, State, Zip, Phone,

BloodType, Notes, MCUID, Booklet, DocID)

MEDICALCAREUNIT(ID , Name, Address, City,

State, Zip, Phone, Type)

SERVICE(ID , Name, Tipology, Difficulty,

Period)

USES(MCUID, SERVICEID)

PRESCRIPTION(SSN, DRUGID, Mode, Dosage,

Administration, StartDate, EndDate,

Comments)

DRUG(ID, Name, Posology, Ingredients,

SideEffects, Manufacturer, Comments)

DRUGIN PHARMACY(DRUGID, PHARID)

PHARMACY(ID, Name, Address, City, State,

Zip, Phone, OpeningHrs)

• logical chunk production: the chunks are defined as
logical views over the global logical database produced
above; for example, the chunk<patient, pre-
scriptions, hospital > is defined as:
CREATE VIEW PAT-PRESC-HOSP AS
SELECT P.SSN, P.FName, P.LName,
DRUG.Name AS DrugName, Posology,
SideEffects, Mode, Dosage, Adminis-
tration, StartDate, EndDate, Comments,
MCU.Name, MCU.Address, MCU.City,
MCU.State, MCU.Zip, MCU.Phone,
MCU.Type
FROM PATIENT P, DRUG, PRESCRIPTION PR,
MEDICALCAREUNIT MCU
WHERE P.SSN = PR.SSN AND PR.DRUGID
= DRUG.ID AND P.MCUID = MCU.ID AND
MCU.Type = ‘‘hospital’’

• chunk instantiation: here the views for the chunk in-
stances are produced. A chunk instance relates to one
specific instance of a dimension value. An instance of
the patient value of the holder dimension is “John
Doe” and one of thechronic disease value of the
interest topic dimension is “Diabetes”. Thus consider the
following view instantiation:
SELECT * FROM PAT-PRESC-HOSP WHERE
SSN = 930029747 AND MCUID.NAME = ‘‘Mt.
Sinai’’’

• introduction of the so calledlogistic dimensions, i.e.
dimensions which do not influence the actual database
design but only the logistic phase:

– Thedata ownershipdimension concernsread , up-
date , delete , and insert access rights to the
VSDB information, which might be different de-
pending on the user categories. Note that access
rights must be analyzed w.r.t.actorsin general differ-
ent from the device holders: in the MCDB example
a patient’s doctor has modify right on the patient’s
prescriptions; the patient, in turn, may read his/her
prescribed drugs, but cannot modify them. The data
ownership dimension does not delimit the boundaries
of the available information; thus it is used to identify

SIGMOD Record, Vol. 33, No. 1, March 2004 73

permission views but not for ambient identification.
– Thetimedimension refers to the information lifespan

the VSDB tables must store: for example, one could
save the whole medical history of the patients in the
fixed machine of their doctor, keeping only the last
month’s data on the device itself.

– The spacedimension concerns the physical area of
interest. For example, a patient resident in Milan is
interested, during a work trip in Genoa, to all medical
facilities in that city, disregarding the information
about the other such facilities located in other cities.

In a context-aware system, time and space are usually
evaluated w.r.t. the actual position of the device (“now”
and “here”), which can be obtained from the system
clock and from a positioning system; they determine
further tailoring of the chunk aggregations that have been
allocated on one device, by means of logical views that
limit the information to that pertaining to the current
context. For example, w.r.t.timeandspace, the following
chunck is derived:
SELECT * FROM PAT-PRESC-HOSP
WHERE SSN = 930029747 AND StartDate <
Now() AND EndDate > Now() AND City =
Here()

IV. L OGISTIC AND PHYSICAL DATA STRUCTURES

The right-side branch of our methodology aims at identify-
ing the most convenient logical and physical data structures
the DBMS must make available for the VSDB designer. We
briefly discuss the technology behind the class of devices we
are considering.

A. Technology issues

Currently, the permanent storage medium for portable de-
vices is Flash EEPROM. Using this technology,write oper-
ations can only be performed if the target location has either
never been written before, or has been previously erased.
Erasure can only be done atblock level; read and write
operations work at the single word granularity. Endurance is
a critical factor as well; each erasure has an impact on the
life of the device whose reliability can be jeopardized. Thus,
a DBMS using a Flash memory must reduce the number of
data modifications.

B. Data structures for very small databases

Classical, indexed data structures are often inappropriate
for VSDB’s; indeed, the search needs we have within the
small tables stored is often not worth the overload required
for managing and maintaining indexes, which are proposed
only in the case of tables with large cardinality and special
needs for multi key search [8]. Instead, we propose what we
call logistic data structures, i.e. intermediate data structures
that should be chosen to implement each database relation. In
the description of such data structures we refer to our MCDB
running example, (see Fig. 2), w.r.t. the holder point of view.

A Heap relation is used to store a small number of
records (generally less than 10), unsorted, typically accessed

by scanning all records when looking for a specific one;
example of this kind of data is theDOCTORrelation in the
MCDB database, storing the entries of the different doctors
that usually cure the patient.

Sorted relations, characterized by a medium (∼=100 -∼=1000
records) cardinality, are used to store information typically
accessed by the sort key. The idea here is to impose an upper
bound to the number of records that can be inserted based
on the complete size of the (fragment of) table. Once the
upper bound is reached, the user will have to delete (or store
externally) a record before adding a new one. With respect to
the running example, theDRUGrelation can be managed by
means of sorted data.

Circular list relations, characterized by a medium cardinal-
ity as well, are again suitable to manage a fixed number of
log data, sorted by date/time; in this case, once the maximum
number of records is reached, the next new record will
substitute the oldest one. In the MCDB example, data logs
of the patient’s last medical exams can be stored by means of
circular lists.

Multi-index relations are used to manage generic data,
typically when the need is to access efficiently large relations
by multiple keys. This is the only data structure we propose
which resembles the classical data structures used in DBMS’s.

Note that the availability of bigger Flash memories will
allow the storage of a larger amount of data in the very same
data structures, with no need to move toward more complex
(indexed) ones. Indeed, the update of stored values being one
of the most expensive tasks w.r.t. Flash memories, the usage of
frequently updated pointers (required by indexed structures) is
often not advisable, being harmful to both memory endurance
and power consumption. On the other hand, a larger memory
capacity will require less frequent erasures, increasing system
performance and endurance.

Our methodology requires the designer to tag each table of
the chunks we want to include in the VSDB under consider-
ation with the following information:

• Tuple length (in bytes) and Expected Relation Cardinality
(eventually specifying an upper bound to the number of
records to be allowed (e.g. 5 records for thePREGNANCY
relation from theholder = ’PATIENT’ point of view).

• Presence of a sorting field, specifying if the field is a time
field leading to a log-like file

• Expected composition of the set of operations on data:
insert/delete/update/select, the last one further classified
in a full select (scan), select with equality (equal), and
select with range (range).

The expected mix refers to the relative frequency of operations.
For instance, consider theDRUGrelation; the user can say
that the dominant operation will be theinsert, usually no
deleteand very fewupdate. The other common operation is
select, assuming an equal distribution in the three identified
selection schemas. Here, the simulator comes into play, issuing
an indication of the data structures the DBMS must employ
for the required relations. Data structure implementation is
discussed in the following subsection.

74 SIGMOD Record, Vol. 33, No. 1, March 2004

Fig. 2. The Medical Care DataBase: Table Annotation and adopted data structures.

C. Physical implementation: memory management

The technology behind Flash memories and their constraint
on data erasure introduces a significant impact on thedelete
and update operations, also affectinginsert operations in
sorted relations. In fact, when the stored data need to be
modified, at least one (but possibly many) memory block needs
to be re-written, implicitly requiring a copy of its content in the
RAM, an erasure of the Flash block and a write-back, from
RAM to Flash, of the modified content (dump/erase/restore
DER sequence). Do note that the DER sequence deeply affects
performance (due to the time required for the data “dump”),
power consumption and storage endurance.

In order to reduce the number of modifications requiring
Flash memory erasure, an additional information is associated
with each record:

• valid bit to indicate that the record has been programmed;
• deleted bit to indicate that the record has been logically

(but not physically) deleted.

The use of thevalid bit is essential when memory is
managed in a non-sequential fashion; in particular, the valid bit
implements a “distributed” control since each valid record is
directly distinguishable from the others, while an end-address
(register) implements a “concentrated” control, since it uni-
vocally identifies the end of the record list. The concentrated
control is a space-aware but energy-time consuming approach
since the end-address value needs to be updated every time
the list is modified with theDER sequence.

The deleted bitis used to allow the system to reduce the
number of Flash memory erasures by marking the corre-
sponding record and deferring the physical expunging to a
later moment. Thedeleted bit, coupled with a not-sequential
management of the physical memory leads to reduce the
necessity to erase blocks, at the cost of an increase in the
amount of required memory and a more complex management
policy, as discussed in the following.

When dealing with data sorted with respect to a field, insert
and delete operations have a significant overhead due to the
necessity to maintain the data ordered; furthermore, if the
relation data is distributed over several blocks, the operation
might affect multiple blocks. The proposed data structure aims
at a) confining block involvement in data manipulation and b)
minimizing block erasure. This goal is achieved by introducing

a number of dummy records per block (Fig. 3a); such records
may be either localized at the end of the block or distributed
through it by means of a hashing function, so that future
insertions do not always cause a re-organization of previously
introduced records (Fig. 3b). The hashing function may be
implemented either in software or in hardware; in this case
the valid bit is mandatory to determine which records are
actually programmed and which are not. The use of the con-
centrated dummy records aims at preventing multiple blocks
involvement when records need to be shifted up or down
following a delete or insert operation (intra-block erasures).
The distributed dummy records solution further limits inter-
block erasures.

The deleted bithas the same function as above (Fig. 3c).

Fig. 3. Use of dummy records a) concentrated at the end of the block -
bold frame - or b) distributed through the block. c) Use of distributed dummy
records anddeleted bit

The combined use of dummy records anddeleted bit is
useful in sorted relations, the use of thedeleted bittechnique
alone is suitable for circular lists and possibly heap relations,
at the cost of additional space requirement w.r.t. the minimum
possible amount of memory. The database annotation allows
the association of the most convenient data structure, as
discussed above. Current research is investigating the impact
and costs of such data structures on generic relations not
falling in previous cases.

V. STRUCTURES EVALUATION AND CONCLUDING

REMARKS

The proposed data structures together with the possible
physical implementation, have been analyzed and compared

SIGMOD Record, Vol. 33, No. 1, March 2004 75

TABLE I

EXPERIMENTAL RESULTS: OCCURRED BLOCK ERASURES AND TRANSMITTED BYTES ON THE SYSTEM BUS W.R.T. “ THE NAIVE”, NO deleted bit, NO

DUMMY RECORDS SOLUTION.

Data Block Erasures Transmitted Bits on Bus
structure Strategy 10%-30% 40%-60% 70%-90% 10%-30% 40%-60% 70%-90%

Simple 1 1 1 1 1 1
Heap Deletedbit 0 0.38 0.98 0.38 0.54 1.00

Simple 1 1 1 1 1 1
Sorted Deletedbit 0.83 0.68 0.79 0.74 0.71 0.77

Dummy adj. 0.83 0.51 0.44 0.74 0.57 0.45
Dummy dist. 0.10 0.12 0.24 0.03 0.06 0.22

Circular Simple 1 1 1 1 1 1
List Deletedbit 0 0 0.05 0.07 0.07 0.15

with a “naive” implementation, both w.r.t. performance and
power consumption. Costs have been estimated in terms of
the total amount of necessary memory due to the additional
bits associated with each record, and the dummy records; algo-
rithm complexity and the consequent execution requirements
(time and power consumption) have been also estimated. The
first results show that the combination of the two strategies
- dummy records (requiring the use of thevalid bit) and
deleted bit- allows to reduce the average time to perform
the operations on data and to significantly limit the number of
erasures. It is worth noting that, with the proposed structures,
selectoperations have an overhead due to the presence of the
empty records that slow the scanning of the data structure. A
simulator has been developed to evaluate all parameters and
to compare different solutions; currently our effort is devoted
to the analysis of generic relations and to the enhancement of
the application of these data structures in different moments
of the database life, depending on the volatility of data [7].

Tab. I reports a summarization of the experimental results
carried out for evaluating the proposed data structures, for
each relation. A synthetic workload made of operations evenly
distributed betweeninsert, deleteand updatewas used, in-
creasing memory occupation to analyze the impact on block
erasures and the amount of information transmitted on the
bus, two significant aspects affecting performance and power
consumption. The setup for the experiments is: 4Kbyte Flash
Memory blocks, a 32 KByte RAM and a 128 byte record size;
then number of Flash blocks and the number of records per
relation differ in the various situations, depending on the data
structure being simulated.

The first part of Tab. I reports the ratio between the num-
ber of block erasures occurring when adopting the specified
implementation and the number of block erasures when using
a “naive” implementation. As an example, consider thesorted
relation with a half full memory (50%): with the concentrated
dummy solution the workload causes only half the number of
block erasures w.r.t. the “naive” implementation. Similarly, the
second part of the table reports the ratio between the number
of bits transmitted on the data bus for each proposed approach
w.r.t. the “naive” implementation.

As can be noted, the achieved results show an improvement
in Flash memory access both in terms of erasure operations
and read/written bits, elements affecting system performance

and power consumption.

Fig. 4. A relative analysis of data access costs of various implementations
of the sortedrelation (“naive”=1).

Fig. 4 shows that enlarging storage capacity, while keeping
the same amount of data, shifts cost and performance towards
the values shown for a partially filled memory. Since absolute
performance values vary among different vendors’ products, in
Tab. I and Fig. 4 we provide only relative figures to compare
the different proposed logical and physical data structures.

Our plans for the future include the complete formalization
of chunk definition and instantiation along with the develop-
ment of a tool to support the DB designer in his/her tasks.

REFERENCES

[1] S. Banerjee et Al., “Rover: Scalable location-aware computing,”IEEE
Computer, vol. 35, no. 10, pp. 46–53, October 2002.

[2] D. L. Lee, W.-C. Lee, J. Xu and B. Zheng, “Data management in location-
dependent information services,”IEEE Pervasive Computing, vol. 1,
no. 3, pp. 65–72, 2002.

[3] H. Mohanty, “Active and nomadic transactions in mobile databases,” in
ADBIS-DASFSAA Symposium, September 2000, pp. 99–107.

[4] B. N. Schilit, J. Trevor, D. M. Hilbert and T. K. Koh, “Web interaction
using very small internet devices,”IEEE Computer, vol. 35, no. 10, pp.
37–45, 2002.

[5] J. Sutherland and W.-J. van den Heuvel, “Enterprise application inte-
gration and complex adaptive systems,”Communications of the ACM,
vol. 45, no. 10, pp. 59–64, 2002.

[6] C. Bolchini and F. A. Schreiber, “Smart card embedded information
systems: a methodology for privacy oriented architectural design,”Data
and Knowledge Engineering, vol. 41, no. 2-3, pp. 159–182, 2002.

[7] C. Bolchini, F. Salice, F. A. Schreiber and L. Tanca, “Logical and physical
design issues for smart card databases,”ACM Trans. on Information
Systems, vol. 21, no. 3, pp. 254–285, 2003.

[8] C. Bobineau, L. Bouganim, P. Pucheral and P. Valduriez, “PicoDBMS:
Scaling down database techniques for smart card,” in26th International
Conference on Very Large Databases, 2000, pp. 11–20.

76 SIGMOD Record, Vol. 33, No. 1, March 2004

